Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 50(38): 13561-13571, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34514486

RESUMO

Theoretical methods of the SOC-NEVPT2 type combined with a molecular fragmentation scheme have been proven to be a powerful tool that allows explaining the luminescence sensitization mechanism in Ln(III) coordination compounds through the antenna effect. In this work, we have used this strategy to predict luminescence in a family of compounds of the Eu(R-phen)(BTA)3 type where R-phen = 5-methyl-1,10-phenanthroline (Me-phen), 5-nitro-1,10-71 phenanthroline (Nitro-phen), 4,5-diazafluoren-9-one (One-phen), or 5,6-epoxy-5,6-dihydro-1,10-72 phenanthroline (Epoxy-phen); and BTA = fluorinated ß-diketone. Possible sensitization pathways were elucidated from the energy difference between the ligand-centered triplet (3T) states and the emissive excited states of the Eu(III) fragments (Latva rules). Calculations show that the most probable mechanism occurs through the triplet state of the BTA which should be enriched by several parallel energy transfer pathways from R-phen substituents. The complexes were synthesized and structurally characterized by X-ray crystallography and various other physicochemical and spectroscopic methods to realize their optical properties and energy transfer pathways from dual antennae. Experimental results were in good agreement with the theoretical predictions, which reinforces the predictive power of the used theoretical methodology.

2.
Molecules ; 25(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545715

RESUMO

Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary time-dependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications.


Assuntos
Antifúngicos , Botrytis/crescimento & desenvolvimento , Piridinas , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA