Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(5): 2338-2352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531810

RESUMO

Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.


Assuntos
Mudança Climática , Modelos Biológicos , Especificidade da Espécie , Plantas , Extinção Biológica , Ecossistema
2.
Nat Ecol Evol ; 8(3): 467-476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212525

RESUMO

Phenology varies widely over space and time because of its sensitivity to climate. However, whether phenological variation is primarily generated by rapid organismal responses (plasticity) or local adaptation remains unresolved. Here we used 1,038,027 herbarium specimens representing 1,605 species from the continental United States to measure flowering-time sensitivity to temperature over time (Stime) and space (Sspace). By comparing these estimates, we inferred how adaptation and plasticity historically influenced phenology along temperature gradients and how their contributions vary among species with different phenology and native climates and among ecoregions differing in species composition. Parameters Sspace and Stime were positively correlated (r = 0.87), of similar magnitude and more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited responsiveness in late summer and delayed flowering in autumn in response to temperature increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and plasticity, from consistently greater importance of plasticity (for example, southeastern United States plains) to their nearly equal importance throughout the season (for example, Western Sierra Madre Piedmont). Our results support the hypothesis that plasticity is the primary driver of flowering-time variation along temperature gradients, with local adaptation having a widespread but comparatively limited role.


Assuntos
Mudança Climática , Flores , Estados Unidos , Temperatura , Flores/fisiologia , Clima , América do Norte
3.
Heredity (Edinb) ; 130(4): 251-258, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781978

RESUMO

Seed size affects individual fitness in wild plant populations, but its ability to evolve may be limited by low narrow-sense heritability (h2). h2 is estimated as the proportion of total phenotypic variance (σ2P) attributable to additive genetic variance (σ2A), so low values of h2 may be due to low σ2A (potentially eroded by natural selection) or to high values of the other factors that contribute to σ2P, such as extranuclear maternal effects (m2) and environmental variance effects (e2). Here, we reviewed the published literature and performed a meta-analysis to determine whether h2 of seed size is routinely low in wild populations and, if so, which components of σ2P contribute most strongly to total phenotypic variance. We analyzed available estimates of narrow-sense heritability (h2) of seed size, as well as the variance components contributing to these parameters. Maternal and environmental components of σ2P were significantly greater than σ2A, dominance, paternal, and epistatic components. These results suggest that low h2 of seed size in wild populations (the mean value observed in this study was 0.13) is due to both high values of maternally derived and environmental (residual) σ2, and low values of σ2A in seed size. The type of breeding design used to estimate h2 and m2 also influenced their values, with studies using diallel designs generating lower variance ratios than nested and other designs. e2 was not influenced by breeding design. For some breeding designs, the number of genotypes included in a study also influenced the resulting h2 and e2 estimates, but not m2. Our data support the view that a diallel design is better suited than the alternatives for the accurate estimation of σ2A in seed size due to its factorial design and the inclusion of reciprocal crosses, which allows the independent estimation of both additive and non-additive components of variance.


Assuntos
Melhoramento Vegetal , Sementes , Genótipo , Clima , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA