Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Online J Public Health Inform ; 16: e53445, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700929

RESUMO

BACKGROUND: Post-COVID-19 condition (colloquially known as "long COVID-19") characterized as postacute sequelae of SARS-CoV-2 has no universal clinical case definition. Recent efforts have focused on understanding long COVID-19 symptoms, and electronic health record (EHR) data provide a unique resource for understanding this condition. The introduction of the International Classification of Diseases, Tenth Revision (ICD-10) code U09.9 for "Post COVID-19 condition, unspecified" to identify patients with long COVID-19 has provided a method of evaluating this condition in EHRs; however, the accuracy of this code is unclear. OBJECTIVE: This study aimed to characterize the utility and accuracy of the U09.9 code across 3 health care systems-the Veterans Health Administration, the Beth Israel Deaconess Medical Center, and the University of Pittsburgh Medical Center-against patients identified with long COVID-19 via a chart review by operationalizing the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC) definitions. METHODS: Patients who were COVID-19 positive with either a U07.1 ICD-10 code or positive polymerase chain reaction test within these health care systems were identified for chart review. Among this cohort, we sampled patients based on two approaches: (1) with a U09.9 code and (2) without a U09.9 code but with a new onset long COVID-19-related ICD-10 code, which allows us to assess the sensitivity of the U09.9 code. To operationalize the long COVID-19 definition based on health agency guidelines, symptoms were grouped into a "core" cluster of 11 commonly reported symptoms among patients with long COVID-19 and an extended cluster that captured all other symptoms by disease domain. Patients having ≥2 symptoms persisting for ≥60 days that were new onset after their COVID-19 infection, with ≥1 symptom in the core cluster, were labeled as having long COVID-19 per chart review. The code's performance was compared across 3 health care systems and across different time periods of the pandemic. RESULTS: Overall, 900 patient charts were reviewed across 3 health care systems. The prevalence of long COVID-19 among the cohort with the U09.9 ICD-10 code based on the operationalized WHO definition was between 23.2% and 62.4% across these health care systems. We also evaluated a less stringent version of the WHO definition and the CDC definition and observed an increase in the prevalence of long COVID-19 at all 3 health care systems. CONCLUSIONS: This is one of the first studies to evaluate the U09.9 code against a clinical case definition for long COVID-19, as well as the first to apply this definition to EHR data using a chart review approach on a nationwide cohort across multiple health care systems. This chart review approach can be implemented at other EHR systems to further evaluate the utility and performance of the U09.9 code.

2.
J Am Med Inform Assoc ; 31(5): 1126-1134, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38481028

RESUMO

OBJECTIVE: Development of clinical phenotypes from electronic health records (EHRs) can be resource intensive. Several phenotype libraries have been created to facilitate reuse of definitions. However, these platforms vary in target audience and utility. We describe the development of the Centralized Interactive Phenomics Resource (CIPHER) knowledgebase, a comprehensive public-facing phenotype library, which aims to facilitate clinical and health services research. MATERIALS AND METHODS: The platform was designed to collect and catalog EHR-based computable phenotype algorithms from any healthcare system, scale metadata management, facilitate phenotype discovery, and allow for integration of tools and user workflows. Phenomics experts were engaged in the development and testing of the site. RESULTS: The knowledgebase stores phenotype metadata using the CIPHER standard, and definitions are accessible through complex searching. Phenotypes are contributed to the knowledgebase via webform, allowing metadata validation. Data visualization tools linking to the knowledgebase enhance user interaction with content and accelerate phenotype development. DISCUSSION: The CIPHER knowledgebase was developed in the largest healthcare system in the United States and piloted with external partners. The design of the CIPHER website supports a variety of front-end tools and features to facilitate phenotype development and reuse. Health data users are encouraged to contribute their algorithms to the knowledgebase for wider dissemination to the research community, and to use the platform as a springboard for phenotyping. CONCLUSION: CIPHER is a public resource for all health data users available at https://phenomics.va.ornl.gov/ which facilitates phenotype reuse, development, and dissemination of phenotyping knowledge.


Assuntos
Registros Eletrônicos de Saúde , Fenômica , Fenótipo , Bases de Conhecimento , Algoritmos
4.
Fed Pract ; 40(11 Suppl 5): S12-S17, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38577308

RESUMO

Background: Within a year of the start of the COVID-19 pandemic, the US Department of Veterans Affairs (VA) was managing about 300 COVID-19-related research projects across roughly 100 facilities, which has since grown to more than 900 projects. This robust set of activities arose from an existing enterprise strategy and aimed at identifying needs for supporting the clinical care mission, more rapidly leveraging resources, and coordinating research across the VA. The VA's efforts to implement an enterprise strategy before March 2020 positioned its research community to dynamically partner with other federal agencies, academic institutions, and industry in addressing a national public health emergency. Observations: The VA research enterprise involves a broad range of functions, scientific and clinical leaders, and organizational resources to enhance the health and care of veterans and the nation. The scope of research activities enables it to support its priorities while also partnering with others who share in mutual commitments to veteran health. Moving toward being the nation's learning health care system, the VA's leadership support, staff, patient volunteers, and partners were key contributors to a national response to COVID-19. Swift action and consistent communication helped address the complexities of the pandemic and strengthened the VA's ability to prepare and mobilize for emergencies and other potential disease outbreaks. Documenting strategies and practices can enhance future opportunities aimed at addressing the most challenging health care needs while also focusing on the primary mission to serve veterans. Conclusions: The COVID-19 pandemic contributed to critical knowledge and lessons that enabled the VA to advance enterprise goals, particularly in the context of its health care system. Sharing these unique processes and experiences will inform current and future partnerships among research, clinical, and public health communities oriented to serve veterans and the nation through scientific innovation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA