Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(42): 54920-54937, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215922

RESUMO

The preparation of highly active, rare earth, non-platinum-based catalysts for hydrogen evolution reactions (HER) in alkaline solutions would be useful in realizing green hydrogen production technology. Perovskite oxides are generally regarded as low-active HER catalysts, owing to their unsuitable hydrogen adsorption and water dissociation. In this article, we report on the synthesis of Li2ZrO3 perovskites substituted with samarium and terbium cations at A-sites for the HER. LSmZrO3 (LSmZO) and LTbZrO3 (LTbZO) perovskite oxides are more affordable materials, starting materials in abundance, environmentally friendly due to reduced usage of precious metal and moreover have potential for several sustainable synthesis methods compared to commercial Pt/C. The surface and elemental composition of the prepared materials have been confirmed by X-ray photoelectron spectroscopy (XPS). The morphology and composition analyses of the LSmZO and LTbZO catalysts showed spherical and regular particles, respectively. The electrochemical measurements were used to study the catalytic performance of the prepared catalyst for hydrogen evolution reactions in an alkaline solution. LTbZO generated 2.52 mmol/g/h hydrogen, whereas LSmZO produced 3.34 mmol/g/h hydrogen using chronoamperometry. This was supported by the fact that the HER electrocatalysts exhibited a Tafel slope of less than 120 mV/dec in a 1.0 M alkaline solution. A current density of 10 mA/cm2 is achieved at a potential of less than 505 mV. The hydrogen production rate of LTbZO was only 58.55%, whereas LSmZO had a higher Faradaic efficiency of 97.65%. The EIS results demonstrated that HER was highly beneficial to both electrocatalysts due to the relatively small charge transfer resistance and higher capacitance values.


Assuntos
Compostos de Cálcio , Hidrogênio , Óxidos , Samário , Térbio , Titânio , Hidrogênio/química , Catálise , Titânio/química , Óxidos/química , Compostos de Cálcio/química , Térbio/química , Samário/química
2.
Nanoscale ; 15(42): 17147-17172, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37853791

RESUMO

To generate and deliver alternative sustainable energy in the face of the current energy crisis, new materials that can capture solar energy and transform it into other useful energies are required. Rare-earth (RE) oxychalcogenides are now being used more frequently as up/down-conversion materials in established photovoltaic (PV) devices to boost their PV performance. Here, through an efficient microwave assisted synthesis procedure, novel nanoplate/sheet shaped nanomaterials of yttrium oxyselenide (YOSe) and its analogues doped with Tb and Eu (YOSe:Tb and YOSe:Eu) were successfully synthesized. Analyses of the structure, stability, morphology, light absorption, and electrochemistry were performed. This work showed that the parent YOSe exhibited green (543 nm) and red (615 nm) emission luminescence when doped with Tb and Eu with a luminescence quantum yield (LQY) of 0.56 and 0.53 for YOSe:Tb and YOSe:Eu nanomaterials, respectively. The surface and material conductivity of YOSe improved with the addition of the dopant elements, with the best outcome shown in YOSe:Eu, according to electrokinetic research evidenced by the enhanced current peaks, reduced charge-transfer resistance (Rct) and low impedance magnitude (Zmag) through electrochemical experiments. These improvements were induced by the distinctive properties of the dopant elements. PCEs of 0.25%, 0.67%, and 1.20% were obtained for YOSe, YOSe:Tb, and YOSe:Eu-based PV devices, respectively, using the nanomaterials as novel absorber layers in a superstrate device design. Our results can initiate further exploitation of the doped host structure for effective down-conversion NIR luminescence for applications in PV devices and to boost the PV performance of existing solar cells.

3.
Polymers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297982

RESUMO

In this study, electron-donating semicrystalline generation 1 poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star copolymer, G1PPT-co-P3HT was chemically prepared for the first time. Copolymerization was achieved with high molecular weight via facile green oxidative reaction. 1H NMR analyses of the star copolymer demonstrated the presence of 84% regioregular (rr) head-to-tail (HT) P3HT, which accounts for the molecular ordering in some grain regions in the macromolecule's morphology, as revealed by the high-resolution scanning electron microscopy (HRSEM) and Selected Area Electron Diffraction (SAED) images, and X-ray diffraction spectroscopy (XRD) measurements. The star copolymer also exhibited good absorption properties in the ultraviolet-visible (UV-Vis) and the near infrared (NIR) spectral regions, which give rise to an optical energy bandgap value as low as 1.43 eV. A HOMO energy level at -5.53 eV, which is below the air-oxidation threshold, was obtained by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) ascertained the semiconducting properties of the macromolecule, which is characterized by a charge transfer resistance, Rct, value of 3.57 kΩ and a Bode plot-phase angle value of 75°. The combination of the EIS properties of G1PPT-co-P3HT and its highly electron-donating capability in bulk heterojunction (BHJ) active layer containing a perylene derivative, as demonstrated by photoluminescence quenching coupled to the observed Förster Resonance charge transfer, suggests its suitability as an electron-donor material for optoelectronic and photovoltaic devices.

4.
Polymers (Basel) ; 14(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35215629

RESUMO

The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808895

RESUMO

Metal chalcogenides such as copper zinc tin sulfide (CZTS) have been intensively studied as potential photovoltaic cell materials, but their viability have been marred by crystal defects and low open circuit potential (Voc) deficit, which affected their energy conversion efficiency. Strategies to improve on the properties of this material such as alloying with other elements have been explored and have yielded promising results. Here, we report the synthesis of CZTS and the partial substitution of S with Te via anion hot injection synthesis method to form a solid solution of a novel kesterite nanomaterial, namely, copper zinc tin sulfide telluride (CZTSTe). Particle-size analyzed via small angle X-ray scattering spectroscopy (SAXS) confirmed that CZTS and CZTSTe materials are nanostructured. Crystal planes values of 112, 200, 220 and 312 corresponding to the kesterite phase with tetragonal modification were revealed by the X-ray diffraction (XRD) spectroscopic analysis of CZTS and CZTSTe. The Raman spectroscopy confirmed the shifts at 281 cm-1 and 347 cm-1 for CZTS, and 124 cm-1, 149 cm-1 and 318 cm-1 for CZTSTe. High degradation rate and the production of hot electrons are very detrimental to the lifespan of photovoltaic cell (PVC) devices, and thus it is important to have PVC absorber layer materials that are thermally stable. Thermogravimetric analysis (TGA) analysis indicated a 10% improvement in the thermal stability of CZTSTe compared to CZTS at 650 °C. With improved electrical conductivity, low charge transfer resistance (Rct) and absorption in the visible region with a low bandgap energy (Eg) of 1.54 eV, the novel CZTSTe nanomaterials displayed favorable properties for photovoltaics application.

6.
Polymers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374983

RESUMO

This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insufficient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods. The studies revealed that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the surface of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak current and increases the charge transfer resistance in comparison with a bare ITO. We also examined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO, P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely block electrons from active layer to reach the ITO electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA