Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cureus ; 16(4): e58109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738022

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by the progressive degeneration of motor neurons, resulting in muscle weakness and paralysis. The neutrophil-to-lymphocyte ratio (NLR) has emerged as a potential marker for monitoring disease severity and progression in ALS, yet longitudinal analyses of NLR are limited. Our study conducts an in-depth examination of NLR dynamics from before diagnosis through the disease's progression to its end stage. We analyze the case of a 56-year-old Puerto Rican male with ALS, tracking his NLR over 13 years - six years before and seven years after his diagnosis - alongside assessments of clinical symptoms and lung function. Our findings indicate that NLR values were initially normal but significantly increased with the onset of symptoms. NLR remained elevated above the normal range, with a notable exception during a period of edaravone therapy when levels normalized. The study demonstrates a clear elevation in NLR associated with ALS progression and critical clinical events, such as symptom onset, diagnosis, and the initiation of respiratory support. This research is, to our knowledge, the first to provide a detailed characterization of NLR changes from the pre-diagnostic phase to end-stage ALS, showing its correlation with clinical deterioration, decreased pulmonary function, and key clinical events. Our results contribute to the body of evidence on NLR's role in ALS while enhancing our understanding of ALS's natural progression.

2.
J Microbiol Biol Educ ; : e0004024, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771051

RESUMO

Science misinformation represents a significant challenge for the scientific community. Hispanic communities are particularly vulnerable due to language barriers and the lack of accessible information in Spanish. We identified that a key step toward enhancing the accessibility of information for non-native English-speaking communities involves imparting science communication education and training to Hispanic youth. Our goal was to provide them with the skills to become science ambassadors who can effectively engage with their communities and bridge communication gaps. To address this, we developed the first science communication training program in Spanish for Hispanic high school and undergraduate students in Puerto Rico. The program called +Ciencia aims to provide training and education on science communication for Hispanic minorities through experiential and collaborative learning. In the short term, our multifaceted approach works to counter misinformation and promote science literacy within the broader community. Over the long term, our grassroots efforts with students will evolve into a generation of professionals equipped with strong engagement skills and comprehensive training in science communication with a specific focus on Hispanic audiences. Herein, we describe the components of this educational program and provide open access to educational materials and articles developed by three cohorts.

3.
Cells ; 13(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38607006

RESUMO

Primary ciliary dyskinesia (PCD) is an inherited disorder that impairs motile cilia, essential for respiratory health, with a reported prevalence of 1 in 16,309 within Hispanic populations. Despite 70% of Puerto Rican patients having the RSPH4A [c.921+3_921+6del (intronic)] founder mutation, the characterization of the ciliary dysfunction remains unidentified due to the unavailability of advanced diagnostic modalities like High-Speed Video Microscopy Analysis (HSVA). Our study implemented HSVA for the first time on the island as a tool to better diagnose and characterize the RSPH4A [c.921+3_921+6del (intronic)] founder mutation in Puerto Rican patients. By applying HSVA, we analyzed the ciliary beat frequency (CBF) and pattern (CBP) in native Puerto Rican patients with PCD. Our results showed decreased CBF and a rotational CBP linked to the RSPH4A founder mutation in Puerto Ricans, presenting a novel diagnostic marker that could be implemented as an axillary test into the PCD diagnosis algorithm in Puerto Rico. The integration of HSVA technology in Puerto Rico substantially enhances the PCD evaluation and diagnosis framework, facilitating prompt detection and early intervention for improved disease management. This initiative, demonstrating the potential of HSVA as an adjunctive test within the PCD diagnostic algorithm, could serve as a blueprint for analogous developments throughout Latin America.


Assuntos
Síndrome de Kartagener , Humanos , Algoritmos , Cílios/patologia , Hispânico ou Latino , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Microscopia de Vídeo
4.
iScience ; 26(8): 107323, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37529105

RESUMO

Lymphocyte depletion is a distinctive feature of Ebola virus (EBOV) disease. The ectodomain of EBOV glycoprotein (GP) is cleaved off the surface of infected cells into circulation as shed GP. To test the hypothesis that shed GP induces lymphocyte death, we cultured primary human B, NK, or T cells with shed GP in vitro. We found that shed GP dependably decreased B, NK, and T cell viability across donors. B and NK cells exhibited higher susceptibility than T cells. Continuous monitoring revealed shed GP began to kill B and NK cells by 4 h and T cells by 5 h. We also demonstrated that shed GP-induced lymphocyte death can be both caspase dependent and caspase independent. Our data are evidence that the cytotoxic effect of shed GP on lymphocytes may contribute to EBOV disease and highlight the need for further research to clarify mechanisms of shed GP-induced death.

5.
Pathogens ; 12(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513779

RESUMO

Bacterial and fungal co-infections are reported complications of coronavirus disease 2019 (COVID-19) in critically ill patients but may go unrecognized premortem due to diagnostic limitations. We compared the premortem with the postmortem detection of pulmonary co-infections in 55 fatal COVID-19 cases from March 2020 to March 2021. The concordance in the premortem versus the postmortem diagnoses and the pathogen identification were evaluated. Premortem pulmonary co-infections were extracted from medical charts while applying standard diagnostic definitions. Postmortem co-infection was defined by compatible lung histopathology with or without the detection of an organism in tissue by bacterial or fungal staining, or polymerase chain reaction (PCR) with broad-range bacterial and fungal primers. Pulmonary co-infection was detected premortem in significantly fewer cases (15/55, 27%) than were detected postmortem (36/55, 65%; p < 0.0001). Among cases in which co-infection was detected postmortem by histopathology, an organism was identified in 27/36 (75%) of cases. Pseudomonas, Enterobacterales, and Staphylococcus aureus were the most frequently identified bacteria both premortem and postmortem. Invasive pulmonary fungal infection was detected in five cases postmortem, but in no cases premortem. According to the univariate analyses, the patients with undiagnosed pulmonary co-infection had significantly shorter hospital (p = 0.0012) and intensive care unit (p = 0.0006) stays and significantly fewer extra-pulmonary infections (p = 0.0021). Bacterial and fungal pulmonary co-infection are under-recognized complications in critically ill patients with COVID-19.

6.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443681

RESUMO

Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder that results from the dysfunction of motile cilia, which can cause chronic upper and lower respiratory infections leading to bronchiectasis. However, there is a need for additional tools to monitor the progression of bronchiectasis in PCD. The forced oscillation technique (FOT) is an effort-independent lung function test that can be used to evaluate respiratory mechanics. In this retrospective study, we aimed to describe the radiographic findings associated with respiratory impedance (resistance (Rrs) and reactance (Xrs)) measured by FOT in six adult PCD patients and one pediatric with the (RSPH4A (c.921+3_921+6delAAGT (intronic)) founder mutation. We compared the radiographic findings on a high-resolution chest computed tomography (CT) scan with the FOT results. Our findings suggest that respiratory impedance measured by FOT may be a valuable tool for detecting and monitoring the progression of bronchiectasis in PCD patients with the (RSPH4A (c.921+3_921+6delAAGT (intronic)) founder mutation. However, further research is necessary to validate these results and determine the sensitivity and specificity of bronchiectasis monitoring in PCD patients with other genetic mutations.

7.
Am J Pathol ; 193(11): 1809-1816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963628

RESUMO

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Autopsia , RNA Viral/análise , Inflamação
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768259

RESUMO

The radial spoke head protein 4 homolog A (RSPH4A) gene is one of more than 50 genes that cause Primary ciliary dyskinesia (PCD), a rare genetic ciliopathy. Genetic mutations in the RSPH4A gene alter an important protein structure involved in ciliary pathogenesis. Radial spoke proteins, such as RSPH4A, have been conserved across multiple species. In humans, ciliary function deficiency caused by RSPH4A pathogenic variants results in a clinical phenotype characterized by recurrent oto-sino-pulmonary infections. More than 30 pathogenic RSPH4A genetic variants have been associated with PCD. In Puerto Rican Hispanics, a founder mutation (RSPH4A (c.921+3_921+6delAAGT (intronic)) has been described. The spectrum of the RSPH4A PCD phenotype does not include laterality defects, which results in a challenging diagnosis. PCD diagnostic tools can combine transmission electron microscopy (TEM), nasal nitric oxide (nNO), High-Speed Video microscopy Analysis (HSVA), and immunofluorescence. The purpose of this review article is to provide a comprehensive overview of current knowledge about the RSPH4A gene in PCD, ranging from basic science to human clinical phenotype.


Assuntos
Síndrome de Kartagener , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Cílios/metabolismo , Proteínas/metabolismo , Mutação , Axonema/metabolismo , Proteínas do Citoesqueleto/metabolismo
9.
Sci Adv ; 9(1): eade8272, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598976

RESUMO

Spleen tyrosine kinase (SYK) is a previously unidentified therapeutic target that inhibits neutrophil and macrophage activation in coronavirus disease 2019 (COVID-19). Fostamatinib, a SYK inhibitor, was studied in a phase 2 placebo-controlled randomized clinical trial and was associated with improvements in many secondary end points related to efficacy. Here, we used a multiomic approach to evaluate cellular and soluble immune mediator responses of patients enrolled in this trial. We demonstrated that SYK inhibition was associated with reduced neutrophil activation, increased circulation of mature neutrophils (CD10+CD33-), and decreased circulation of low-density granulocytes and polymorphonuclear myeloid-derived suppressor cells (HLA-DR-CD33+CD11b-). SYK inhibition was also associated with normalization of transcriptional activity in circulating monocytes relative to healthy controls, an increase in frequency of circulating nonclassical and HLA-DRhi classical monocyte populations, and restoration of interferon responses. Together, these data suggest that SYK inhibition may mitigate proinflammatory myeloid cellular and soluble mediator responses thought to contribute to immunopathogenesis of severe COVID-19.


Assuntos
COVID-19 , Humanos , Quinase Syk , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Antígenos HLA-DR , Homeostase
10.
Nature ; 612(7941): 758-763, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517603

RESUMO

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Assuntos
Autopsia , Encéfalo , COVID-19 , Especificidade de Órgãos , SARS-CoV-2 , Humanos , Encéfalo/virologia , COVID-19/virologia , RNA Viral/análise , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Replicação Viral , Fatores de Tempo , Sistema Respiratório/patologia , Sistema Respiratório/virologia
11.
medRxiv ; 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36415460

RESUMO

Understanding early innate immune responses to coronavirus disease 2019 (COVID-19) is crucial to developing targeted therapies to mitigate disease severity. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection elicits interferon expression leading to transcription of IFN-stimulated genes (ISGs) to control viral replication and spread. SARS-CoV-2 infection also elicits NF-κB signaling which regulates inflammatory cytokine expression contributing to viral control and likely disease severity. Few studies have simultaneously characterized these two components of innate immunity to COVID-19. We designed a study to characterize the expression of interferon alpha-2 (IFNA2) and interferon beta-1 (IFNB1), both type-1 interferons (IFN-1), interferon-gamma (IFNG), a type-2 interferon (IFN-2), ISGs, and NF-κB response genes in the upper respiratory tract (URT) of patients with mild (outpatient) versus severe (hospitalized) COVID-19. Further, we characterized the weekly dynamics of these responses in the upper and lower respiratory tracts (LRTs) and blood of severe patients to evaluate for compartmental differences. We observed significantly increased ISG and NF-κB responses in the URT of mild compared with severe patients early during illness. This pattern was associated with increased IFNA2 and IFNG expression in the URT of mild patients, a trend toward increased IFNB1-expression and significantly increased STING/IRF3/cGAS expression in the URT of severe patients. Our by-week across-compartment analysis in severe patients revealed significantly higher ISG responses in the blood compared with the URT and LRT of these patients during the first week of illness, despite significantly lower expression of IFNA2, IFNB1, and IFNG in blood. NF-κB responses, however, were significantly elevated in the LRT compared with the URT and blood of severe patients during peak illness (week 2). Our data support that severe COVID-19 is associated with impaired interferon signaling in the URT during early illness and robust pro-inflammatory responses in the LRT during peak illness.

12.
Clin Infect Dis ; 75(1): e491-e498, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34467402

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) requiring hospitalization is characterized by robust antibody production, dysregulated immune response, and immunothrombosis. Fostamatinib is a novel spleen tyrosine kinase inhibitor that we hypothesize will ameliorate Fc activation and attenuate harmful effects of the anti-COVID-19 immune response. METHODS: We conducted a double-blind, randomized, placebo-controlled trial in hospitalized adults requiring oxygen with COVID-19 where patients receiving standard of care were randomized to receive fostamatinib or placebo. The primary outcome was serious adverse events by day 29. RESULTS: A total of 59 patients underwent randomization (30 to fostamatinib and 29 to placebo). Serious adverse events occurred in 10.5% of patients in the fostamatinib group compared with 22% in placebo (P = .2). Three deaths occurred by day 29, all receiving placebo. The mean change in ordinal score at day 15 was greater in the fostamatinib group (-3.6 ±â€…0.3 vs -2.6 ±â€…0.4, P = .035) and the median length in the intensive care unit was 3 days in the fostamatinib group vs 7 days in placebo (P = .07). Differences in clinical improvement were most evident in patients with severe or critical disease (median days on oxygen, 10 vs 28, P = .027). There were trends toward more rapid reductions in C-reactive protein, D-dimer, fibrinogen, and ferritin levels in the fostamatinib group. CONCLUSION: For COVID-19 requiring hospitalization, the addition of fostamatinib to standard of care was safe and patients were observed to have improved clinical outcomes compared with placebo. These results warrant further validation in larger confirmatory trials. CLINICAL TRIALS REGISTRATION: Clinicaltrials.gov, NCT04579393.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Aminopiridinas , Método Duplo-Cego , Hospitalização , Humanos , Morfolinas , Oxazinas/uso terapêutico , Oxigênio , Piridinas/uso terapêutico , Pirimidinas , SARS-CoV-2 , Resultado do Tratamento
13.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764490

RESUMO

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Assuntos
Interferon gama/imunologia , Interleucina-10/imunologia , SARS-CoV-2/imunologia , Células Th1/imunologia , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/imunologia , COVID-19/patologia , Complemento C3a/imunologia , Complemento C3b/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação Linfocitária/imunologia , Receptores de Calcitriol/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Transcrição Gênica/genética
14.
Front Immunol ; 12: 779026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956207

RESUMO

A 26-year-old otherwise healthy man died of fulminant myocarditis. Nasopharyngeal specimens collected premortem tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Histopathological evaluation of the heart showed myocardial necrosis surrounded by cytotoxic T-cells and tissue-repair macrophages. Myocardial T-cell receptor (TCR) sequencing revealed hyper-dominant clones with highly similar sequences to TCRs that are specific for SARS-CoV-2 epitopes. SARS-CoV-2 RNA was detected in the gut, supporting a diagnosis of multisystem inflammatory syndrome in adults (MIS-A). Molecular targets of MIS-associated inflammation are not known. Our data indicate that SARS-CoV-2 antigens selected high-frequency T-cell clones that mediated fatal myocarditis.


Assuntos
COVID-19/complicações , Miocardite/patologia , Miocardite/virologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Linfócitos T/imunologia , Adulto , COVID-19/imunologia , COVID-19/patologia , Humanos , Masculino , Miocardite/imunologia , RNA Viral/análise , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/imunologia
15.
PLoS Pathog ; 17(4): e1009431, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33831133

RESUMO

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.


Assuntos
COVID-19 , Epitopos , Imunidade Humoral , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/genética , COVID-19/imunologia , Linhagem Celular , Epitopos/genética , Epitopos/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
16.
bioRxiv ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33655255

RESUMO

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH 2 -terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting. AUTHOR SUMMARY: Mutant sequences of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) arising during any individual case of coronavirus disease 2019 (COVID-19) could theoretically enable the virus to evade immune responses or antiviral therapies that target the predominant infecting virus sequence. However, commonly used sequencing technologies are not optimally designed to detect variant virus sequences within each sample. To address this issue, we developed novel technology for sequencing large numbers of individual SARS-CoV-2 genomic RNA molecules across the region encoding the virus surface proteins. This technology revealed extensive genetic diversity in cultured viruses from a clinical isolate of SARS-CoV-2, but lower diversity in samples from 7 individuals with COVID-19. Importantly, concurrent analysis of paired serum samples in selected individuals revealed relatively low levels of antibody binding to the SARS-CoV-2 spike protein at the time of initial sequencing. With increased serum binding to spike protein, we detected multiple SARS-CoV-2 variants bearing independent mutations in a single epitope, as well as a transient increase in virus burden. These findings suggest that SARS-CoV-2 replication creates sufficient virus genetic diversity to allow immune-mediated selection of variants within the time frame of acute COVID-19. Large-scale studies of SARS-CoV-2 variation and specific immune responses will help define the contributions of intra-individual SARS-CoV-2 evolution to COVID-19 clinical outcomes and antiviral drug susceptibility.

17.
J Infect Dis ; 223(6): 981-984, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367731

RESUMO

Neutrophil extracellular traps (NETs) contribute to immunothrombosis and have been associated with mortality in coronavirus disease 2019 (COVID-19). We stimulated donor neutrophils with plasma from patients with COVID-19 and demonstrated that R406 can abrogate the release of NETs. These data provide evidence for how fostamatinib may mitigate neutrophil-associated mechanisms contributing to COVID-19 immunopathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , Armadilhas Extracelulares/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Oxazinas/farmacologia , Piridinas/farmacologia , Aminopiridinas , COVID-19/sangue , COVID-19/patologia , Humanos , Morfolinas , Pirimidinas , SARS-CoV-2/isolamento & purificação
18.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115950

RESUMO

There is limited information about the impact of Zika virus (ZIKV) exposure in utero on the anti-ZIKV immune responses of offspring. We infected six rhesus macaque dams with ZIKV early or late in pregnancy and studied four of their offspring over the course of a year postpartum. Despite evidence of ZIKV exposure in utero, we observed no structural brain abnormalities in the offspring. We detected infant-derived ZIKV-specific immunoglobulin A antibody responses and T cell memory responses during the first year postpartum in the two offspring born to dams infected with ZIKV early in pregnancy. Critically, although the infants had acquired some immunological memory of ZIKV, it was not sufficient to protect them against reinfection with ZIKV at 1 year postpartum. The four offspring reexposed to ZIKV at 1 year postpartum all survived but exhibited acute viremia and viral tropism to lymphoid tissues; three of four reexposed offspring exhibited spinal cord pathology. These data suggest that macaque infants born to dams infected with ZIKV during pregnancy remain susceptible to postnatal infection and consequent neuropathology.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Macaca mulatta , Período Pós-Parto , Gravidez , Reinfecção
20.
Sci Rep ; 9(1): 2275, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783117

RESUMO

Parasitic helminths and helminth-derived molecules have demonstrated to possess powerful anti-inflammatory properties and confirmed therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress specific Th1 specific immune responses induced by concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. In this study, we demonstrate that native F. hepatica glutathione S-transferase (nFhGST), a major parasite excretory-secretory antigen, majorly comprised of Mu-class GST isoforms, significantly suppresses the LPS-induced TNFα and IL1ß of mouse bone-marrow derived macrophages in vitro and the pro-inflammatory cytokine/chemokine storm within C57BL/6 mice exposed to lethal doses of LPS increasing their survival rate by more than 85%. Using THP1-Blue CD14 cells, a human monocyte cell line, we also demonstrate that nFhGST suppresses NF-κB activation in response to multiple TLR-ligands, including whole bacteria clinical isolates and this suppression was found to be dose-dependent and independent of the timing of exposure. Moreover, the suppressive effect of nFhGST on NF-κB activation was shown to be independent of enzyme activity or secondary structure of protein. As part of its anti-inflammatory effect nFhGST target multiple proteins of the canonic and non-canonic NF-κB signaling pathway as well as also JAK/STAT pathway. Overall, our results demonstrate the potent anti-inflammatory properties of nFhGST and its therapeutic potential as an anti-inflammatory agent.


Assuntos
Citocinas/imunologia , Fasciola hepatica/imunologia , Glutationa Transferase/imunologia , Proteínas de Helminto/imunologia , NF-kappa B/imunologia , Choque Séptico/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA