Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 521(7550): 65-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25951285

RESUMO

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

3.
J Acoust Soc Am ; 134(4): 3185-200, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24116515

RESUMO

As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120-2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett-Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.


Assuntos
Acústica , Oceanografia/métodos , Estações do Ano , Água do Mar , Som , Acústica/instrumentação , Modelos Estatísticos , Movimento (Física) , Oceanografia/instrumentação , Oceanos e Mares , Filipinas , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Espectrografia do Som , Propriedades de Superfície , Temperatura , Fatores de Tempo , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA