Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Eur Radiol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127075

RESUMO

OBJECTIVES: To assess the incidence (1 year) and the cumulative incidence (3 years) of the condition of patients accruing cumulative effective doses (CED) of ≥ 100 mSv and their variability among different hospitals. To establish and validate a reference level for the CED in patients with recurrent exposures (RERL) and provide a RERL value. METHODS: Data of CT exposure was collected in 9 similar hospitals. The database included 294,222 patient*years who underwent 442,278 CT exams in 3 years. The incidence proportion of patients with CED ≥ 100 mSv in a given year (I100;1) and the 3-year cumulative incidence of patients with CED ≥ 100 mSv over 3 consecutive years (I100;3) were calculated and compared among different institutions. RESULTS: I100;1 ranged from a minimum of 0.1% to a maximum of 5.1%. The percentage of recurrent patients was quite uniform among centres ranging from 23 to 38%. The I100;3 ranged from a minimum of 1.1 to 11.4%. There was a strong positive correlation between the third quartile values of yearly CED and yearly incidence (r = 0.90; R2 = 0.81; p < 0.0001). RERL value in our study was found at 34.0 mSv. CONCLUSION: The management of patients with recurrent exposures is highly variable among hospitals leading to a 50-fold variation in I100;1 and to a tenfold variation in I100;3. RERL could be established and used by taking as a RERL quantity the CED and as a RERL value the 75th percentile of the third quartiles of the distribution of the yearly CED obtained by surveying different hospitals. CLINICAL RELEVANCE STATEMENT: This is the first ever multicentre study that quantifies recurrent exposures in terms of incidence and cumulative incidence of patients with CED ≥ 100 mSv. RERL establishment and use could benefit the optimisation of radioprotection of patients with recurrent exposures. KEY POINTS: This is the first multicentre study estimating yearly incidence and 3-year cumulative incidence of patients with cumulative effective doses ≥ 100 mSv. In this study, a 50-fold inter centre variation between the maximum (5.1%) and the minimum value (0.1%) of yearly incidence of patients with cumulative effective doses ≥ 100 mSv was reported. The range of the 3-year cumulative incidence extended from 1.1 to 11.4% (a tenfold variation) The third quartile of the yearly cumulative effective doses in a centre showed a strong positive correlation with the yearly incidence of patients with cumulative effective doses ≥ 100 mSv, with a potential of being used to set reference levels for recurrent exposures.

2.
Life (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37629503

RESUMO

Nuclear medicine has acquired a crucial role in the management of patients with neuroendocrine neoplasms (NENs) by improving the accuracy of diagnosis and staging as well as their risk stratification and personalized therapies, including radioligand therapies (RLT). Artificial intelligence (AI) and radiomics can enable physicians to further improve the overall efficiency and accuracy of the use of these tools in both diagnostic and therapeutic settings by improving the prediction of the tumor grade, differential diagnosis from other malignancies, assessment of tumor behavior and aggressiveness, and prediction of treatment response. This systematic review aims to describe the state-of-the-art AI and radiomics applications in the molecular imaging of NENs.

3.
Insights Imaging ; 13(1): 23, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124735

RESUMO

The evaluation of radiation burden in vivo is crucial in modern radiology as stated also in the European Directive 2013/59/Euratom-Basic Safety Standard. Although radiation dose monitoring can impact the justification and optimization of radiological procedure, as well as effective patient communication, standardization of radiation monitoring software is far to be achieved. Toward this goal, the Italian Association of Medical Physics (AIFM) published a report describing the state of the art and standard guidelines in radiation dose monitoring system quality assurance. This article reports the AIFM statement about radiation dose monitoring systems (RDMSs) summarizing the different critical points of the systems related to Medical Physicist Expert (MPE) activities before, during, and after their clinical implementation. In particular, the article describes the general aspects of radiation dose data management, radiation dose monitoring systems, data integrity, and data responsibilities. Furthermore, the acceptance tests that need to be implemented and the most relevant dosimetric data for each radiological modalities are reported under the MPE responsibility.

4.
J Nucl Med ; 63(7): 1014-1020, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740949

RESUMO

Our objective was to evaluate the prognostic value of somatostatin receptor tumor burden on 68Ga-DOTATOC PET/CT in patients with well-differentiated (WD) neuroendocrine tumors (NETs). Methods: We retrospectively analyzed the 68Ga-DOTATOC PET/CT scans of 84 patients with histologically confirmed WD NETs (51 grade 1, 30 grade 2, and 3 grade 3). For each PET/CT scan, all 68Ga-DOTATOC-avid lesions were independently segmented by 2 operators using a customized threshold based on the healthy liver SUVmax (LIFEx, version 5.1). Somatostatin receptor-expressing tumor volume (SRETV) and total lesion somatostatin receptor expression (TLSRE = SRETV × SUVmean) were extracted for each lesion, and then whole-body SRETV and TLSRE (SRETVwb and TLSREwb, respectively) were defined as the sum of SRETV and TLSRE, respectively, for all segmented lesions in each patient. Time to progression (TTP) was defined as the combination of disease-free survival in patients undergoing curative surgery (n = 10) and progression-free survival for patients with unresectable or metastatic disease (n = 74). TTP and overall survival were calculated by Kaplan-Meier analysis, log-rank testing, and the Cox proportional-hazards regression model. Results: After a median follow-up of 15.5 mo, disease progression was confirmed in 35 patients (41.7%) and 14 patients died. A higher SRETVwb (>39.1 cm3) and TLSREwb (>306.8 g) correlated significantly with a shorter median TTP (12 mo vs. not reached; P < 0.001). In multivariate analysis, SRETVwb (P = 0.005) was the only independent predictor of TTP regardless of histopathologic grade and TNM staging. Conclusion: According to our results, SRETVwb and TLSREwb extracted from 68Ga-DOTATOC PET/CT could predict TTP or overall survival and might have important clinical utility in the management of patients with WD NETs.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Radioisótopos de Gálio , Humanos , Tumores Neuroendócrinos/metabolismo , Octreotida/análogos & derivados , Octreotida/metabolismo , Compostos Organometálicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Receptores de Somatostatina , Estudos Retrospectivos
5.
Front Oncol ; 11: 769295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869000

RESUMO

BACKGROUND: The whole-body low-dose CT (WBLDCT) is the first-choice imaging technique in patients with suspected plasma cell disorder to assess the presence of osteolytic lesions. We investigated the performances of an optimized protocol, evaluating diagnostic accuracy and effective patient dose reduction using a latest generation scanner. METHODS AND MATERIALS: Retrospective study on 212 patients with plasma cell disorders performed on a 256-row CT scanner. First, WBLDCT examinations were performed using a reference protocol with acquisition parameters obtained from literature. A phantom study was performed for protocol optimization for subsequent exams to minimize dose while maintaining optimal diagnostic accuracy. Images were analyzed by three readers to evaluate image quality and to detect lesions. Effective doses (E) were evaluated for each patient considering the patient dimensions and the tube current modulation. RESULTS: A similar, very good image quality was observed for both protocols by all readers with a good agreement at repeated measures ANOVA test (p>0.05). An excellent inter-rater agreement for lesion detection was achieved obtaining high values of Fleiss' kappa for all the districts considered (p<0.001). The optimized protocol resulted in a 56% reduction of median DLP (151) mGycm, interquartile range (IQR) 128-188 mGycm vs. 345 mGycm, IQR 302-408 mGycm), of 60% of CTDIvol (2.2 mGy, IQR 1.9-2.7 mGy vs. 0.9 mGy, IQR 0.8-1.2 mGy). The median E value was about 2.6 mSv (IQR 1.7-3.5 mSv) for standard protocol and about 1.5 mSv (IQR 1.4-1.7 mSv) for the optimized one. Dose reduction was statistically significant with p<0.001. CONCLUSIONS: Protocol optimization makes ultra-low-dose WBLDCT feasible on latest generation CT scanners for patients with plasma cell disorders with effective doses inferior to conventional skeletal survey while maintaining excellent image quality and diagnostic accuracy. Dose reduction is crucial in such patients, as they are likely to undergo multiple whole-body CT scans during follow-up.

6.
Phys Med ; 83: 221-241, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33951590

RESUMO

PURPOSE: To perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results. MATERIALS AND METHODS: A Pubmed search was conducted using terms Artificial Intelligence, Machine Learning, Deep learning, imaging, and Italy as affiliation, excluding reviews and papers outside time interval 2015-2020. In a second phase, participants of the working group AI4MP on Artificial Intelligence of the Italian Association of Physics in Medicine (AIFM) searched for papers on AI in imaging. RESULTS: The Pubmed search produced 794 results. 168 studies were selected, of which 122 were from Pubmed search and 46 from the working group. The most used imaging modality was MRI (44%) followed by CT(12%) ad radiography/mammography (11%). The most common clinical indication were neurological diseases (29%) and diagnosis of cancer (25%). Classification was the most common task for AI (57%) followed by segmentation (16%). 65% of studies used machine learning and 35% used deep learning. We observed a rapid increase of research in Italy on artificial intelligence in the last 5 years, peaking at 155% from 2018 to 2019. CONCLUSIONS: We are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Itália , Imageamento por Ressonância Magnética , Física
7.
Biomedicines ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801987

RESUMO

AIM: To evaluate if conventional Positron emission tomography (PET) parameters and radiomic features (RFs) extracted by 18F-FDG-PET/CT can differentiate among different histological subtypes of lung neuroendocrine neoplasms (Lu-NENs). METHODS: Forty-four naïve-treatment patients on whom 18F-FDG-PET/CT was performed for histologically confirmed Lu-NEN (n = 46) were retrospectively included. Manual segmentation was performed by two operators allowing for extraction of four conventional PET parameters (SUVmax, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)) and 41 RFs. Lu-NENs were classified into two groups: lung neuroendocrine tumors (Lu-NETs) vs. lung neuroendocrine carcinomas (Lu-NECs). Lu-NETs were classified according to histological subtypes (typical (TC)/atypical carcinoid (AC)), Ki67-level, and TNM staging. The least absolute shrink age and selection operator (LASSO) method was used to select the most predictive RFs for classification and Pearson correlation analysis was performed between conventional PET parameters and selected RFs. RESULTS: PET parameters, in particular, SUVmax (area under the curve (AUC) = 0.91; cut-off = 5.16) were higher in Lu-NECs vs. Lu-NETs (p < 0.001). Among RFs, HISTO_Entropy_log10 was the most predictive (AUC = 0.90), but correlated with SUVmax/SUVmean (r = 0.95/r = 0.94, respectively). No statistical differences were found between conventional PET parameters and RFs (p > 0.05) and TC vs. AC classification. Conventional PET parameters were correlated with N+ status in Lu-NETs. CONCLUSION: In our study, conventional PET parameters were able to distinguish Lu-NECs from Lu-NETs, but not TC from AC. RFs did not provide additional information.

8.
EJNMMI Phys ; 8(1): 21, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33638729

RESUMO

OBJECTIVE: To identify the impact of segmentation methods and intensity discretization on radiomic features (RFs) extraction from 68Ga-DOTA-TOC PET images in patients with neuroendocrine tumors. METHODS: Forty-nine patients were retrospectively analyzed. Tumor contouring was performed manually by four different operators and with a semi-automatic edge-based segmentation (SAEB) algorithm. Three SUVmax fixed thresholds (20, 30, 40%) were applied. Fifty-one RFs were extracted applying two different intensity rescale factors for gray-level discretization: one absolute (AR60 = SUV from 0 to 60) and one relative (RR = min-max of the VOI SUV). Dice similarity coefficient (DSC) was calculated to quantify segmentation agreement between different segmentation methods. The impact of segmentation and discretization on RFs was assessed by intra-class correlation coefficients (ICC) and the coefficient of variance (COVL). The RFs' correlation with volume and SUVmax was analyzed by calculating Pearson's correlation coefficients. RESULTS: DSC mean value was 0.75 ± 0.11 (0.45-0.92) between SAEB and operators and 0.78 ± 0.09 (0.36-0.97), among the four manual segmentations. The study showed high robustness (ICC > 0.9): (a) in 64.7% of RFs for segmentation methods using AR60, improved by applying SUVmax threshold of 40% (86.5%); (b) in 50.9% of RFs for different SUVmax thresholds using AR60; and (c) in 37% of RFs for discretization settings using different segmentation methods. Several RFs were not correlated with volume and SUVmax. CONCLUSIONS: RFs robustness to manual segmentation resulted higher in NET 68Ga-DOTA-TOC images compared to 18F-FDG PET/CT images. Forty percent SUVmax thresholds yield superior RFs stability among operators, however leading to a possible loss of biological information. SAEB segmentation appears to be an optimal alternative to manual segmentation, but further validations are needed. Finally, discretization settings highly impacted on RFs robustness and should always be stated.

9.
Radiol Med ; 126(1): 55-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32495272

RESUMO

PURPOSE: The purpose of this study was to verify the maintenance of low-contrast detectability at different CT dose reduction levels, in patients of different sizes, as a consequence of the application of iterative reconstruction at different strengths combined with tube current modulation. METHODS: Anthropomorphic abdominal phantoms of two sizes (small and large) were imaged at a fixed noise with iterative algorithm ASIR-V percentages in the range between 0 and 70% and corresponding dose reductions in the range of 0-83%. A total of 1400 images with and without liver low-contrast simulated lesions were evaluated by five radiologists, using the receiver operating characteristics (ROC) paradigm and evaluating the area under the ROC curve (AUC). The human observer results were then compared with AUC obtained with a channelized Hotelling observer (CHO). CNR values were also calculated. RESULTS: For the small phantom, the AUC values lie between 0.90 and 0.93 for human evaluations of images acquired without iterative reconstruction, with 30% ASIR-V and with 50% ASIR-V. The AUC decreased significantly to 0.81 (p = 0.0001) at 70% ASIR-V. The CHO results were in coherence with human observer scores. Also, similar results were observed for the large size phantom. CNR values were stable for the different ASIR-V percentages. CONCLUSIONS: The iterative algorithm maintained the low-contrast detectability up to a dose reduction of about 70%, following application of a 50% ASIR-V combined with automatic tube current modulation, regardless of the phantom size. At further dose reductions using greater iterative percentages, a significant decrease in detectability was observed.


Assuntos
Abdome/diagnóstico por imagem , Tamanho Corporal , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Algoritmos , Antropometria , Humanos , Imagens de Fantasmas , Doses de Radiação
10.
Radiology ; 298(3): E141-E151, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33170104

RESUMO

Background There is lack of guidance on specific CT protocols for imaging patients with coronavirus disease 2019 (COVID-19) pneumonia. Purpose To assess international variations in CT utilization, protocols, and radiation doses in patients with COVID-19 pneumonia. Materials and Methods In this retrospective data collection study, the International Atomic Energy Agency coordinated a survey between May and July 2020 regarding CT utilization, protocols, and radiation doses from 62 health care sites in 34 countries across five continents for CT examinations performed in patients with COVID-19 pneumonia. The questionnaire obtained information on local prevalence, method of diagnosis, most frequent imaging, indications for CT, and specific policies on use of CT in COVID-19 pneumonia. Collected data included general information (patient age, weight, clinical indication), CT equipment (CT make and model, year of installation, number of detector rows), scan protocols (body region, scan phases, tube current and potential), and radiation dose descriptors (CT dose index and dose length product). Descriptive statistics and generalized estimating equations were performed. Results Data from 782 patients (median age, 59 years [interquartile range, 15 years]) from 54 health care sites in 28 countries were evaluated. Less than one-half of the health care sites used CT for initial diagnosis of COVID-19 pneumonia and three-fourths used CT for assessing disease severity. CT dose index varied based on CT vendors (7-11 mGy; P < .001), number of detector rows (8-9 mGy; P < .001), year of CT installation (7-10 mGy; P = .006), and reconstruction techniques (7-10 mGy; P = .03). Multiphase chest CT examinations performed at 20% of sites (11 of 54) were associated with higher dose length product compared with single-phase chest CT examinations performed in 80% of sites (43 of 54) (P = .008). Conclusion CT use, scan protocols, and radiation doses in patients with coronavirus disease 2019 pneumonia showed wide variation across health care sites within the same and between different countries. Many patients were imaged multiple times and/or with multiphase CT scan protocols. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee in this issue.


Assuntos
COVID-19/diagnóstico por imagem , Protocolos Clínicos , Internacionalidade , Pulmão/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2
11.
Cancers (Basel) ; 12(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380754

RESUMO

OBJECTIVES: (1.1) to evaluate the association between baseline 18F-FDG PET/CT semi-quantitative parameters of the primary lesion with progression free survival (PFS), overall survival (OS) and response to immunotherapy, in advanced non-small cell lung carcinoma (NSCLC) patients eligible for immunotherapy; (1.2) to evaluate the application of radiomics analysis of the primary lesion to identify features predictive of response to immunotherapy; (1.3) to evaluate if tumor burden assessed by 18F-FDG PET/CT (N and M factors) is associated with PFS and OS. MATERIALS AND METHODS: we retrospectively analyzed clinical records of advanced NCSLC patients (stage IIIb/c or stage IV) candidate to immunotherapy who performed 18F-FDG PET/CT before treatment to stage the disease. Fifty-seven (57) patients were included in the analysis (F:M 17:40; median age = 69 years old). Notably, 38/57 of patients had adenocarcinoma (AC), 10/57 squamous cell carcinoma (SCC) and 9/57 were not otherwise specified (NOS). Overall, 47.4% patients were stage IVA, 42.1% IVB and 8.8% IIIB. Immunotherapy was performed as front-line therapy in 42/57 patients and as second line therapy after chemotherapy platinum-based in 15/57. The median follow up after starting immunotherapy was 10 months (range: 1.5-68.6). Therapy response was assessed by RECIST 1.1 criteria (CT evaluation every 4 cycles of therapy) in 48/57 patients or when not feasible by clinical and laboratory data (fast disease progression or worsening of patient clinical condition in nine patients). Radiomics analysis was performed by applying regions of interest (ROIs) of the primary tumor delineated manually by two operators and semi-automatically applying a threshold at 40% of SUVmax. RESULTS: (1.1) metabolic tumor volume (MTV) (p = 0.028) and total lesion glycolysis (TLG) (p = 0.035) were significantly associated with progressive vs. non-progressive disease status. Patients with higher values of MTV and TLG had higher probability of disease progression, compared to those patients presenting with lower values. SUVmax did not show correlation with PD status, PFS and OS. MTV (p = 0.027) and TLG (p = 0.022) also resulted in being significantly different among PR, SD and PD groups, while SUVmax was confirmed to not be associated with response to therapy (p = 0.427). (1.2) We observed the association of several radiomics features with PD status. Namely, patients with high tumor volume, TLG and heterogeneity expressed by "skewness" and "kurtosis" had a higher probability of failing immunotherapy. (1.3) M status at 18F-FDG PET/CT was significantly associated with PFS (p = 0.002) and OS (p = 0.049). No significant associations were observed for N status. CONCLUSIONS: 18F-FDG PET/CT performed before the start of immunotherapy might be an important prognostic tool able to predict the disease progression and response to immunotherapy in patients with advanced NSCLC, since MTV, TLG and radiomics features (volume and heterogeneity) are associated with disease progression.

12.
Front Med (Lausanne) ; 7: 601853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575262

RESUMO

Aim: This work aims to evaluate whether the radiomic features extracted by 68Ga-DOTATOC-PET/CT of two patients are associated with the response to peptide receptor radionuclide therapy (PRRT) in patients affected by neuroendocrine tumor (NET). Methods: This is a pilot report in two NET patients who experienced a discordant response to PRRT (responder vs. non-responder) according to RECIST1.1. The patients presented with liver metastasis from the rectum and pancreas G3-NET, respectively. Whole-body total-lesion somatostatin receptor-expression (TLSREwb-50) and somatostatin receptor-expressing tumor volume (SRETV wb-50) were obtained in pre- and post-PRRT PET/CT. Radiomic analysis was performed, extracting 38 radiomic features (RFs) from the patients' lesions. The Mann-Whitney test was used to compare RFs in the responder patient vs. the non-responder patient. Pearson correlation and principal component analysis (PCA) were used to evaluate the correlation and independence of the different RFs. Results: TLSREwb-50 and SRETVwb-50 modifications correlate with RECIST1.1 response. A total of 28 RFs extracted on pre-therapy PET/CT showed significant differences between the two patients in the Mann-Whitney test (p < 0.05). A total of seven second-order features, with poor correlation with SUVmax and PET volume, were identified by the Pearson correlation matrix. Finally, the first two PCA principal components explain 83.8% of total variance. Conclusion: TLSREwb-50 and SRETVwb-50 are parameters that might be used to predict and to assess the PET response to PRRT. RFs might have a role in defining inter-patient heterogeneity and in the prediction of therapy response. It is important to implement future studies with larger and more homogeneous patient populations to confirm the efficacy of these biomarkers.

14.
J Comput Assist Tomogr ; 42(2): 191-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28937493

RESUMO

OBJECTIVE: The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). METHODS: Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. RESULTS: Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). CONCLUSIONS: Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Abdome , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pelve , Radiografia Abdominal/métodos , Radiografia Torácica/métodos
15.
Phys Med ; 39: 67-72, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28602688

RESUMO

The aim of the guideline presented in this article is to unify the test parameters for image quality evaluation and radiation output in all types of cone-beam computed tomography (CBCT) systems. The applications of CBCT spread over dental and interventional radiology, guided surgery and radiotherapy. The chosen tests provide the means to objectively evaluate the performance and monitor the constancy of the imaging chain. Experience from all involved associations has been collected to achieve a consensus that is rigorous and helpful for the practice. The guideline recommends to assess image quality in terms of uniformity, geometrical precision, voxel density values (or Hounsfield units where available), noise, low contrast resolution and spatial resolution measurements. These tests usually require the use of a phantom and evaluation software. Radiation output can be determined with a kerma-area product meter attached to the tube case. Alternatively, a solid state dosimeter attached to the flat panel and a simple geometric relationship can be used to calculate the dose to the isocentre. Summary tables including action levels and recommended frequencies for each test, as well as relevant references, are provided. If the radiation output or image quality deviates from expected values, or exceeds documented action levels for a given system, a more in depth system analysis (using conventional tests) and corrective maintenance work may be required.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Controle de Qualidade , Software , Guias como Assunto , Humanos , Radiografia Dentária , Radiologia Intervencionista , Radiocirurgia , Relatório de Pesquisa
16.
Radiol Med ; 122(8): 581-588, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28365888

RESUMO

OBJECTIVE: The aim of this study was to evaluate images quality and radiation doses of Cone Beam Computed Tomography (CBCT) for dental and maxillofacial imaging testing five different acquisition protocols. METHODS: Dose measurements of different acquisition protocols were calculated for Pax Zenith three-dimensional (3D) Cone Beam (Vatech, Korea) and for conventional orthopantomography (OPT) and cephalometric skull imaging Ortophos (Sirona Dental Systems, Bernsheim, Germany). The absorbed organ doses were measured using an anthropomorphic phantom loaded with thermoluminescent dosimeters at 58 sites related to sensitive organs. Five different CBCT protocols were evaluated for image quality and radiation doses. They differed in FOV, image resolution, kVp, mA, acquisition time in seconds and radiation dose. Measurements were then carried out with the orthopantomograph. Equivalent and effective doses were calculated. RESULTS: The reference protocol with large FOV, high resolution quality images, 95 kVp, 5 mA and acquisition time of 24 s resulted in a DAP value of 1556 mGy cm2 instead the protocol with reduced kVp from 95 to 80 kVp translated into a value of DAP inferior to 35% (from 1556 to 1013 mGy cm2). Going from a high resolution to a normal resolution, there was a reduction of the acquisition time to 15 s which allowed further dose reduction of approximately 40% (628 mGy cm2); this protocol resulted in a value of effective dose of 35 microSievert (µSv). Moreover, the effect of changing FOV has been evaluated, considering two scans with a reduced FOV (160 × 140  and 120 × 90 mm, respectively). CONCLUSIONS: CBCT low-dose protocol with large FOV, normal resolution quality images, 80 kVp, 5 mA and acquisition time of 15 s resulted in a value of effective dose of 35 microSievert (µSv). This protocol allows the study of maxillofacial region with high quality of images and a very low radiation dose and, therefore, could be proposed in selected case where a complete assessment of dental and maxillofacial region is useful for treatment planning.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Radiografia Dentária/métodos , Cefalometria , Humanos , Imagens de Fantasmas , Doses de Radiação , Radiografia Panorâmica , Dosimetria Termoluminescente
17.
Med Phys ; 43(5): 2515, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147362

RESUMO

PURPOSE: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. METHODS: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using pcxmc software (pcxmc 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients' differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (Kair), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. RESULTS: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between pcxmc and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses than Kair and KAP, with average ratios ranging between 0.9 and 1.1 and variations for different organs and protocols below 20%. The triple phantom setup allowed us to take into account scatter dose contributions, but nonetheless, the correlation with the evaluated organ doses was not improved with this method. CONCLUSIONS: The simulation of rotational geometry and of asymmetric beam distribution by means of pcxmc 2.0 enabled us to determine patient organ doses depending on weight, height and gender. Alternatively, the measurement of an in phantom dose indicator combined with proper correction coefficients can be a useful tool for a first dose estimation of in-field organs. The data and coefficients provided in this study can be applied to any patient undergoing a scan by an Elekta XVI equipment.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Radioterapia Guiada por Imagem/métodos , Dosimetria Termoluminescente/métodos , Envelhecimento , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/instrumentação , Feminino , Cabeça/efeitos da radiação , Humanos , Imageamento Tridimensional/instrumentação , Masculino , Modelos Anatômicos , Método de Monte Carlo , Pescoço/efeitos da radiação , Pelve/efeitos da radiação , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/instrumentação , Caracteres Sexuais , Software , Dosimetria Termoluminescente/instrumentação , Tórax/efeitos da radiação , Adulto Jovem
18.
Radiol Med ; 121(4): 291-300, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676837

RESUMO

OBJECTIVE: The purpose of this study was to optimize an aorta angiographic CT protocol, by investigating the best combination of tube current modulation, iterative algorithm strength and kV reduction. MATERIALS AND METHODS: Anthropomorphic phantoms of three sizes were imaged by CT with different values of noise index, of iterative algorithm ASIR percentages and kV in the range 80-120. Quantitative noise and contrast noise ratios were evaluated at different phantom locations. Three radiologists assessed the subjective image quality by comparing the image series with the one acquired with the reference protocol (120 kV, slice thickness 0.625, noise index 28, ASIR 40 %). RESULTS: Although the highest CNR values were obtained for the 80 kV acquisitions, qualitative scores were higher for 100 and 120 kV at the same noise index. An optimized protocol was established with a NI of 39.2, ASIR 60%, 100 kV for small- and medium-sized patients and 120 kV for large-sized patients, with a dose reduction of 47%. CONCLUSION: When different dose reduction parameters are available, anthropomorphic phantoms of different sizes help to find the optimal combination. For aorta studies, 100 kV with relative high values of noise indexes and iterative levels provides the best balance between dose reduction and image quality.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aortografia/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Imagens de Fantasmas
19.
PLoS One ; 10(11): e0141497, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545097

RESUMO

Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.


Assuntos
Gráficos por Computador , Computadores , Linguagens de Programação , Intensificação de Imagem Radiográfica/métodos , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Imagens de Fantasmas , Software , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA