Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873339

RESUMO

Vesicular monoamine transporter 2 (VMAT2) is an essential transporter that regulates brain monoamine transmission and is important for mood, cognition, motor activity, and stress regulation. However, VMAT2 remains underexplored as a pharmacological target. In this study, we report that tricyclic and tetracyclic antidepressants acutely inhibit, but persistently upregulate VMAT2 activity by promoting VMAT2 protein maturation. Importantly, the VMAT2 upregulation effect was greater in BE(2)-M17 cells that endogenously express VMAT2 as compared to a heterologous expression system (HEK293). The net sustained effect of tricyclics and tetracyclics is an upregulation of VMAT2 activity, despite their acute inhibitory effect. Furthermore, imipramine and mianserin, two representative compounds, also demonstrated rescue of nine VMAT2 variants that cause Brain Vesicular Monoamine Transport Disease (BVMTD). VMAT2 upregulation could be beneficial for disorders associated with reduced monoamine transmission, including mood disorders and BVMTD, a rare but often fatal condition caused by a lack of functional VMAT2. Our findings provide the first evidence that small molecules can upregulate VMAT2 and have potential therapeutic benefit for various neuropsychiatric conditions.

2.
Neuropsychopharmacology ; 48(12): 1742-1751, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37349472

RESUMO

Glutamatergic NMDA receptors (NMDAR) are critical for cognitive function, and their reduced expression leads to intellectual disability. Since subpopulations of NMDARs exist in distinct subcellular environments, their functioning may be unevenly vulnerable to genetic disruption. Here, we investigate synaptic and extrasynaptic NMDARs on the major output neurons of the prefrontal cortex in mice deficient for the obligate NMDAR subunit encoded by Grin1 and wild-type littermates. With whole-cell recording in brain slices, we find that single, low-intensity stimuli elicit surprisingly-similar glutamatergic synaptic currents in both genotypes. By contrast, clear genotype differences emerge with manipulations that recruit extrasynaptic NMDARs, including stronger, repetitive, or pharmacological stimulation. These results reveal a disproportionate functional deficit of extrasynaptic NMDARs compared to their synaptic counterparts. To probe the repercussions of this deficit, we examine an NMDAR-dependent phenomenon considered a building block of cognitive integration, basal dendrite plateau potentials. Since we find this phenomenon is readily evoked in wild-type but not in Grin1-deficient mice, we ask whether plateau potentials can be restored by an adult intervention to increase Grin1 expression. This genetic manipulation, previously shown to restore cognitive performance in adulthood, successfully rescues electrically-evoked basal dendrite plateau potentials after a lifetime of NMDAR compromise. Taken together, our work demonstrates NMDAR subpopulations are not uniformly vulnerable to the genetic disruption of their obligate subunit. Furthermore, the window for functional rescue of the more-sensitive integrative NMDARs remains open into adulthood.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo
3.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142435

RESUMO

With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.


Assuntos
Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ratos , Camundongos , Animais , Oxidopamina/toxicidade , Reprodutibilidade dos Testes , Camundongos Knockout
4.
Artigo em Inglês | MEDLINE | ID: mdl-36251462

RESUMO

Introduction: Cannabis use has been associated with an increased incidence of psychiatric disorders, yet the underlying neurobiological processes mediating these associations are poorly understood. Whereas exposure to Δ9-tetrahydrocannabinol (THC) has been associated with the development or exacerbation of psychosis, treatment with cannabidiol (CBD) has been associated with amelioration of psychosis. In this study, we demonstrate a complex effect of CBD in mouse models of psychosis, based on factors, including dose, strain, and genotype. Methods: Adult GluN1 knockdown (GluN1KD) and dopamine transporter knockout (DATKO) mice (almost equally balanced for male/female) were acutely treated with vehicle, THC (4 mg/kg), CBD (60, 120 mg/kg), or THC:CBD (1:15, 4:60 mg/kg) and tested in behavioral assays. Results: GluN1KD and DATKO mice displayed hyperactivity, impaired habituation, and sensorimotor gating, along with increased stereotypy and vertical activity. THC, alone and in combination with CBD, produced a robust "dampening" effect on the exploratory behavior regardless of strain or genotype. CBD exhibited a more complex profile. At 60 mg/kg, CBD had minimal effects on horizontal activity, but the effects varied in terms of directionality (increase vs. decrease) in other parameters; effects on stereotypic behaviors differ by genotype, while effects on vertical exploration differ by strain×genotype. CBD at 120 mg/kg had a "dampening" effect on exploration overall, except in GluN1KD mice, where no effect was observed. In terms of sensorimotor gating, both THC and CBD had minimal effects, except for 120 mg/kg CBD, which exacerbated the acoustic startle response. Conclusions: Here, we present a study that highlights the complex mechanism of phytocannabinoids, particularly CBD, in models of psychosis-like behavior. These data require careful interpretation, as agonism of the cannabinoid receptor 1 (CB1) resulting in a decrease in locomotion can be misinterpreted as "antipsychotic-like" activity in murine behavioral outputs of psychosis. Importantly, the THC-mediated decrease in hyperexploratory behavior observed in our models (alone or in combination) was not specific to the genetic mutants, but rather was observed regardless of strain or genotype. Furthermore, CBD treatment, when comparing mutants with their wild-type littermate controls, showed little to no "antipsychotic-like" activity in our models. Therefore, it is not only important to consider dose when designing/interpreting therapeutically driven phytocannabinoid studies, but also effects of strain or genetic vulnerability respective to the general population.

5.
Epilepsia ; 63(10): e132-e137, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35983985

RESUMO

We report on an 8-year-old girl with severe developmental and epileptic encephalopathy due to the compound heterozygous null variants p.(Gln661*) and p.(Leu830Profs*2) in GRIN2A resulting in a knockout of the human GluN2A subunit of the N-methyl-D-aspartate receptor. Both parents had less severe GRIN2A-related phenotypes and were heterozygous carriers of the respective null variant. Functional investigations of both variants suggested a loss-of-function effect. This is the first description of an autosomal recessive, biallelic type of GRIN2A-related disorder. Nonetheless, there are marked parallels to two previously published families with severe epileptic encephalopathy due to homozygous null variants in GRIN1 as well as various knockout animal models. Compared to heterozygous null variants, biallelic knockout of either GluN1 or GluN2A is associated with markedly more severe phenotypes in both humans and mice. Furthermore, recent findings enable a potential precision medicine approach targeting GRIN-related disorders due to null variants.


Assuntos
Epilepsia Generalizada , Transtornos Mentais , Animais , Criança , Feminino , Humanos , Camundongos , Fenótipo , Receptores de N-Metil-D-Aspartato/genética
6.
Genes Brain Behav ; 21(6): e12825, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705513

RESUMO

The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.


Assuntos
Máscaras , Receptores de N-Metil-D-Aspartato , Animais , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Percepção , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Front Cell Neurosci ; 16: 832536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614973

RESUMO

Mutations in the dopamine transporter gene (SLC6A3) have been implicated in many human diseases. Among these is the infantile parkinsonism-dystonia known as Dopamine Transporter Deficiency Syndrome (DTDS). Afflicted individuals have minimal to no functional dopamine transporter protein. This is primarily due to retention of misfolded disease-causing dopamine transporter variants. This results in a variety of severe motor symptoms in patients and the disease ultimately leads to death in adolescence or young adulthood. Though no treatment is currently available, pharmacological chaperones targeting the dopamine transporter have been shown to rescue select DTDS disease-causing variants. Previous work has identified two DAT pharmacological chaperones with moderate potency and efficacy: bupropion and ibogaine. In this study, we carried out structure-activity relationships (SARs) for bupropion and ibogaine with the goal of identifying the chemical features required for pharmacological chaperone activity. Our results show that the isoquinuclidine substituent of ibogaine and its analogs is an important feature for pharmacological chaperone efficacy. For bupropion, the secondary amine group is essential for pharmacological chaperone activity. Lastly, we describe additional ibogaine and bupropion analogs with varying chemical modifications and variable pharmacological chaperone efficacies at the dopamine transporter. Our results contribute to the design and refinement of future dopamine transporter pharmacological chaperones with improved efficacies and potencies.

8.
Mol Psychiatry ; 27(5): 2393-2404, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35264726

RESUMO

A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Antipsicóticos/metabolismo , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Transtornos Psicóticos/metabolismo , Esquizofrenia/metabolismo
9.
Schizophr Res ; 249: 63-73, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33189520

RESUMO

Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.


Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/diagnóstico por imagem , Ácido Glutâmico , Ácido Aspártico , Encéfalo
10.
Neuropharmacology ; 199: 108805, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560056

RESUMO

Considerable genetic variation of N-methyl-d-aspartate receptors (NMDARs) has recently become apparent, with many hundreds of de novo variants identified through widely available clinical genetic testing. Individuals with GRIN variants present with neurological conditions such as epilepsy, autism, intellectual disability (ID), movement disorders, schizophrenia and behavioral disorders. Determination of the functional consequence of genetic variation for NMDARs should lead to precision therapeutics. Furthermore, genetic animal models harboring human variants have the potential to reveal mechanisms that are shared among different neurological conditions, providing strategies that may allow treatment of individuals who are refractory to therapy. Preclinical studies in animal models and small open label trials in humans support this idea. However, additional functional data for variants and animal models corresponding to multiple individuals with the same genotype are needed to validate this approach and to lead to thoughtfully designed, randomized, placebo-controlled clinical trials, which could provide data in order to determine safety and efficacy of potential precision therapeutics.


Assuntos
Epilepsia/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética , Animais , Variação Genética , Humanos
11.
Neuropsychopharmacology ; 46(2): 413-422, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33036015

RESUMO

The endocannabinoid system (eCBs) encompasses the endocannabinoids, their synthetic and degradative enzymes, and cannabinoid (CB) receptors. The eCBs mediates inhibition of neurotransmitter release and acts as a major homeostatic system. Many aspects of the eCBs are altered in a number of psychiatric disorders including schizophrenia, which is characterized by dysregulation of dopaminergic signaling. The GluN1-Knockdown (GluN1KD) and Dopamine Transporter Knockout (DATKO) mice are models of hyperdopaminergia, which display abnormal psychosis-related behaviors, including hyperlocomotion and changes in pre-pulse inhibition (PPI). Here, we investigate the ability of a novel CB1 receptor (CB1R) allosteric modulator, ABM300, to ameliorate these dysregulated behaviors. ABM300 was characterized in vitro (receptor binding, ß-arrestin2 recruitment, ERK1/2 phosphorylation, cAMP inhibition) and in vivo (anxiety-like behaviors, cannabimimetic effects, novel environment exploratory behavior, pre-pulse inhibition, conditioned avoidance response) to assess the effects of the compound in dysregulated behaviors within the transgenic models. In vitro, ABM300 increased CB1R agonist binding but acted as an inhibitor of CB1R agonist induced signaling, including ß-arrestin2 translocation, ERK phosphorylation and cAMP inhibition. In vivo, ABM300 did not elicit anxiogenic-like or cannabimimetic effects, but it decreased novelty-induced hyperactivity, exaggerated stereotypy, and vertical exploration in both transgenic models of hyperdopaminergia, as well as normalizing PPI in DATKO mice. The data demonstrate for the first time that a CB1R allosteric modulator ameliorates the behavioral deficits in two models of increased dopamine, warranting further investigation as a potential therapeutic target in psychiatry.


Assuntos
Canabinoides , Endofenótipos , Animais , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides , Roedores
12.
Mol Psychiatry ; 26(7): 2929-2942, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32807843

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Assuntos
Receptores de N-Metil-D-Aspartato , Alelos , Animais , Encéfalo/metabolismo , Edição de Genes , Mutação com Perda de Função , Camundongos , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Neuropharmacology ; 168: 108015, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092443

RESUMO

Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Assuntos
Canais de Potássio Cálcio-Ativados/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Caracteres Sexuais , Isolamento Social/psicologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Neurônios Serotoninérgicos/efeitos dos fármacos
14.
Neurobiol Dis ; 132: 104527, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299220

RESUMO

NMDA receptor dysfunction is central to the encephalopathies caused by missense mutations in the NMDA receptor subunit genes. Missense variants of GRIN1, GRIN2A, and GRIN2B cause similar syndromes with varying severity of intellectual impairment, autism, epilepsy, and motor dysfunction. To gain insight into possible biomarkers of NMDAR hypofunction, we asked whether a loss-of-function variant in the Grin1 gene would cause structural changes in the brain that could be detected by MRI. We also studied the developmental trajectory of these changes to determine whether structural changes coincided with reported cognitive impairments in the mice. We performed magnetic resonance imaging in male Grin1-/- knockdown mice (GluN1KD) that were three, six, or twelve weeks old. Deformation-based morphometry was used to assess neuroanatomical differences. Volumetric reductions were detected in substantia nigra and striatum of GluN1KD mice at all ages. Changes in limbic structures were only evident at six weeks of age. Reductions in white matter volumes were first evident at three weeks, and additional deficits were detected at six and twelve weeks. FluoroJade immunofluorescence revealed degenerating neurons in twelve-week old GluN1KD mice. We conclude that Grin1 loss-of-function mutations cause volume reductions in dopaminergic structures early in development, while changes to limbic and white matter structures are delayed and are more pronounced in post-adolescent ages. The evidence of degenerating neurons in the mature brain indicates an ongoing process of cell loss as a consequence of NMDAR hypofunction.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Mutação com Perda de Função/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Fatores Etários , Animais , Encéfalo/diagnóstico por imagem , Neurônios Dopaminérgicos/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão/fisiologia
15.
Sci Rep ; 9(1): 5087, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911039

RESUMO

Converging evidence suggests bioenergetic defects contribute to the pathophysiology of schizophrenia and may underlie cognitive dysfunction. The transport and metabolism of lactate energetically couples astrocytes and neurons and supports brain bioenergetics. We examined the concentration of lactate in postmortem brain (dorsolateral prefrontal cortex) in subjects with schizophrenia, in two animal models of schizophrenia, the GluN1 knockdown mouse model and mutant disrupted in schizophrenia 1 (DISC1) mouse model, as well as inducible pluripotent stem cells (iPSCs) from a schizophrenia subject with the DISC1 mutation. We found increased lactate in the dorsolateral prefrontal cortex (p = 0.043, n = 16/group) in schizophrenia, as well as in frontal cortical neurons differentiated from a subject with schizophrenia with the DISC1 mutation (p = 0.032). We also found a decrease in lactate in mice with induced expression of mutant human DISC1 specifically in astrocytes (p = 0.049). These results build upon the body of evidence supporting bioenergetic dysfunction in schizophrenia, and suggests changes in lactate are a key feature of this often devastating severe mental illness.


Assuntos
Encéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactatos/metabolismo , Esquizofrenia/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Diagnóstico , Modelos Animais de Doenças , Lobo Frontal/citologia , Lobo Frontal/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Mol Neurobiol ; 56(6): 4492-4517, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30338483

RESUMO

We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.


Assuntos
Metabolismo Energético , Redes Reguladoras de Genes , Esquizofrenia/metabolismo , Esquizofrenia/terapia , Animais , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Pioglitazona/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reprodutibilidade dos Testes , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Comportamento Estereotipado/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
PLoS One ; 13(10): e0199341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352064

RESUMO

NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.


Assuntos
Comportamento Exploratório , Aprendizagem em Labirinto , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Comportamento Animal , Cognição , Cruzamentos Genéticos , Espinhas Dendríticas/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Fenótipo , Transdução de Sinais , Transgenes , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
18.
Front Pharmacol ; 9: 953, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233365

RESUMO

The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.

19.
Anesthesiology ; 129(3): 477-489, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29889105

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Postoperative delirium is associated with poor long-term outcomes and increased mortality. General anesthetic drugs may contribute to delirium because they increase cell-surface expression and function of α5 subunit-containing γ-aminobutyric acid type A receptors, an effect that persists long after the drugs have been eliminated. Dexmedetomidine, an α2 adrenergic receptor agonist, prevents delirium in patients and reduces cognitive deficits in animals. Thus, it was postulated that dexmedetomidine prevents excessive function of α5 γ-aminobutyric acid type A receptors. METHODS: Injectable (etomidate) and inhaled (sevoflurane) anesthetic drugs were studied using cultured murine hippocampal neurons, cultured murine and human cortical astrocytes, and ex vivo murine hippocampal slices. γ-Aminobutyric acid type A receptor function and cell-signaling pathways were studied using electrophysiologic and biochemical methods. Memory and problem-solving behaviors were also studied. RESULTS: The etomidate-induced sustained increase in α5 γ-aminobutyric acid type A receptor cell-surface expression was reduced by dexmedetomidine (mean ± SD, etomidate: 146.4 ± 51.6% vs. etomidate + dexmedetomidine: 118.4 ± 39.1% of control, n = 8 each). Dexmedetomidine also reduced the persistent increase in tonic inhibitory current in hippocampal neurons (etomidate: 1.44 ± 0.33 pA/pF, n = 10; etomidate + dexmedetomidine: 1.01 ± 0.45 pA/pF, n = 9). Similarly, dexmedetomidine prevented a sevoflurane-induced increase in the tonic current. Dexmedetomidine stimulated astrocytes to release brain-derived neurotrophic factor, which acted as a paracrine factor to reduce excessive α5 γ-aminobutyric acid type A receptor function in neurons. Finally, dexmedetomidine attenuated memory and problem-solving deficits after anesthesia. CONCLUSIONS: Dexmedetomidine prevented excessive α5 γ-aminobutyric acid type A receptor function after anesthesia. This novel α2 adrenergic receptor- and brain-derived neurotrophic factor-dependent pathway may be targeted to prevent delirium.


Assuntos
Anestésicos Intravenosos/farmacologia , Dexmedetomidina/farmacologia , Etomidato/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA-A/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Função Executiva/efeitos dos fármacos , Função Executiva/fisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Nat Commun ; 8(1): 1791, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29176681

RESUMO

The identification of circulating autoantibodies against neuronal receptors in neuropsychiatric disorders has fostered new conceptual and clinical frameworks. However, detection reliability, putative presence in different diseases and in health have raised questions about potential pathogenic mechanism mediated by autoantibodies. Using a combination of single molecule-based imaging approaches, we here ascertain the presence of circulating autoantibodies against glutamate NMDA receptor (NMDAR-Ab) in about 20% of psychotic patients diagnosed with schizophrenia and very few healthy subjects. NMDAR-Ab from patients and healthy subjects do not compete for binding on native receptor. Strikingly, NMDAR-Ab from patients, but not from healthy subjects, specifically alter the surface dynamics and nanoscale organization of synaptic NMDAR and its anchoring partner the EphrinB2 receptor in heterologous cells, cultured neurons and in mouse brain. Functionally, only patients' NMDAR-Ab prevent long-term potentiation at glutamatergic synapses, while leaving NMDAR-mediated calcium influx intact. We unveil that NMDAR-Ab from psychotic patients alter NMDAR synaptic transmission, supporting a pathogenically relevant role.


Assuntos
Autoanticorpos/imunologia , Receptores de N-Metil-D-Aspartato/imunologia , Esquizofrenia/imunologia , Sinapses/metabolismo , Adulto , Animais , Autoanticorpos/sangue , Autoanticorpos/metabolismo , Cálcio/metabolismo , Efrina-B2/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/sangue , Imagem Individual de Molécula , Sinapses/imunologia , Transmissão Sináptica/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA