Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Metab ; 34(1): 106-124.e10, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986329

RESUMO

Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation.


Assuntos
Autoimunidade , Purinas , Linfócitos T CD8-Positivos , Células Dendríticas , Ativação Linfocitária , Purinas/metabolismo
3.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978345

RESUMO

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Cromatografia Líquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Espectrometria de Massas/métodos , Enzimas Multifuncionais/genética , Fosforilação , Proteínas/genética , Nucleotídeos de Purina/metabolismo , Purinas/metabolismo
4.
Cell ; 171(5): 1110-1124.e18, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29033128

RESUMO

Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells. Instead, detection of cytosolic DNA by the cGAS-STING axis induces a cell death program initiating potassium efflux upstream of NLRP3. Forward genetics identified regulators of lysosomal trafficking to modulate this cell death program, and subsequent studies revealed that activated STING traffics to the lysosome, where it triggers membrane permeabilization and thus lysosomal cell death (LCD). Importantly, the cGAS-STING-NLRP3 pathway constitutes the default inflammasome response during viral and bacterial infections in human myeloid cells. We conclude that targeting the cGAS-STING-LCD-NLRP3 pathway will ameliorate pathology in inflammatory conditions that are associated with cytosolic DNA sensing.


Assuntos
Morte Celular , Inflamassomos/metabolismo , Monócitos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA