RESUMO
Rift Valley Fever (RVF) is a zoonosis transmitted by Aedes and Culex mosquitoes, and is considered a priority pathogen by the WHO. RVF epidemics mostly occur in Africa and can decimate livestock herds, causing significant economic losses and posing health risks for humans. RVF transmission is associated with the occurrence of El Niño events that cause floods in eastern Africa and favour the emergence of mosquitoes in wetlands. Different risk models have been developed to forecast RVF transmission risk but very few studies have validated models at pan-African scale. This study aims to validate the skill of the Liverpool Rift Valley Fever model (LRVF) in reproducing RVF epidemics over Africa and to explore the relationship between simulated climatic suitability for RVF transmission and large-scale climate modes of variability such as the El Niño Southern Oscillation (ENSO) and the Dipole Mode Index (DMI). Our results show that the LRVF model correctly simulates RVF transmission hotspots and reproduces large epidemics that affected African countries. LRVF was able to correctly reproduce major RVF epidemics in Somalia, Kenya, Zambia and to a lesser extent for Mauritania and Senegal. The positive phases of ENSO and DMI are associated with an increased risk of RVF over the Horn of Africa, with important time lags. Following research activities should focus on the development of predictive modelling systems at different time scales.
Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/epidemiologia , Surtos de Doenças , Zoonoses/epidemiologia , Quênia/epidemiologiaRESUMO
Between the Last Glacial Maximum and the mid-Holocene, the Mediterranean Sea experienced major hydrological changes. The deposition of the last sapropel, S1, during the Early Holocene is a consequence of these changes. In order to cause anoxia in the Eastern Mediterranean Sea (EMS) bottom water, a long preconditioning period of a few thousand years would need to occur throughout the deglaciation prior to S1. It is generally believed that this freshwater was of North Atlantic origin, later supplemented by the African Humid period (AHP). Here, we investigate another potentially important source of freshwater to the EMS: the Fennoscandian ice sheet (FIS) meltwater, running into the Caspian and Black Seas. A few scenarios of continental hydrologic perturbation have been developed to drive a high-resolution Mediterranean Sea general circulation model. We demonstrate that, during the last deglaciation, FIS meltwater flowing into the Black Sea reduced surface salinity and ventilation over the main convection areas in the EMS. By including continental hydrological changes, a more consistent framework is produced to characterize the hydrology of the Mediterranean Sea during the last deglaciation and the Early Holocene.
Assuntos
Água Doce , Camada de Gelo , Congelamento , Mar Mediterrâneo , Água do MarRESUMO
Studies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.
Assuntos
Camada de Gelo , Malária/transmissão , Animais , Anopheles , Aquecimento Global , Groenlândia , Humanos , Malária/epidemiologia , Modelos Teóricos , Mosquitos Vetores , Prevalência , ChuvaRESUMO
Warm periods in Earth's history offer opportunities to understand the dynamics of the Earth system under conditions that are similar to those expected in the near future. The Middle Pliocene warm period (MPWP), from 3.3 to 3.0 My B.P, is the most recent time when atmospheric CO2 levels were as high as today. However, climate model simulations of the Pliocene underestimate high-latitude warming that has been reconstructed from fossil pollen samples and other geological archives. One possible reason for this is that enhanced non-CO2 trace gas radiative forcing during the Pliocene, including from methane (CH4), has not been included in modeling. We use a suite of terrestrial biogeochemistry models forced with MPWP climate model simulations from four different climate models to produce a comprehensive reconstruction of the MPWP CH4 cycle, including uncertainty. We simulate an atmospheric CH4 mixing ratio of 1,000 to 1,200 ppbv, which in combination with estimates of radiative forcing from N2O and O3, contributes a non-CO2 radiative forcing of 0.9 [Formula: see text] (range 0.6 to 1.1), which is 43% (range 36 to 56%) of the CO2 radiative forcing used in MPWP climate simulations. This additional forcing would cause a global surface temperature increase of 0.6 to 1.0 °C, with amplified changes at high latitudes, improving agreement with geological evidence of Middle Pliocene climate. We conclude that natural trace gas feedbacks are critical for interpreting climate warmth during the Pliocene and potentially many other warm phases of the Cenezoic. These results also imply that using Pliocene CO2 and temperature reconstructions alone may lead to overestimates of the fast or Charney climate sensitivity.
RESUMO
It is generally considered that the perennial glaciation of Greenland lasting several orbital cycles began around 2.7 Ma along with the intensification of Northern Hemisphere glaciation (NHG). Both data and model studies have demonstrated that a decline in atmospheric pCO2 was instrumental in establishing a perennial Greenland ice sheet (GrIS), yet models have generally used simplistic pCO2 constraints rather than data-inferred pCO2 evolution. Here, using a method designed for the long-term coupling of climate and cryosphere models and pCO2 scenarios from different studies, we highlight the pivotal role of pCO2 on the GrIS expansion across the Plio-Pleistocene Transition (PPT, 3.0-2.5 Ma), in particular in the range between 280 and 320 ppm. Good qualitative agreement is obtained between various IRD reconstructions and some of the possible evolutions of the GrIS simulated by our model. Our results underline the dynamism of the GrIS waxing and waning under pCO2 levels similar to or lower than today, which supports recent evidence of a dynamic GrIS during the Plio-Pleistocene.
RESUMO
Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
Assuntos
Clima , Animais , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Planeta Terra , Camada de Gelo/química , Datação RadiométricaRESUMO
The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting.
Assuntos
Mudança Climática/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Simulação por Computador , Congelamento , Água Doce , Groenlândia , Humanos , Camada de Gelo , Modelos Teóricos , Água do Mar , Fatores de Tempo , Movimentos da ÁguaRESUMO
It is widely believed that the Sahara desert is no more than â¼2-3 million years (Myr) old, with geological evidence showing a remarkable aridification of north Africa at the onset of the Quaternary ice ages. Before that time, north African aridity was mainly controlled by the African summer monsoon (ASM), which oscillated with Earth's orbital precession cycles. Afterwards, the Northern Hemisphere glaciation added an ice volume forcing on the ASM, which additionally oscillated with glacial-interglacial cycles. These findings led to the idea that the Sahara desert came into existence when the Northern Hemisphere glaciated â¼2-3 Myr ago. The later discovery, however, of aeolian dune deposits â¼7 Myr old suggested a much older age, although this interpretation is hotly challenged and there is no clear mechanism for aridification around this time. Here we use climate model simulations to identify the Tortonian stage (â¼7-11 Myr ago) of the Late Miocene epoch as the pivotal period for triggering north African aridity and creating the Sahara desert. Through a set of experiments with the Norwegian Earth System Model and the Community Atmosphere Model, we demonstrate that the African summer monsoon was drastically weakened by the Tethys Sea shrinkage during the Tortonian, allowing arid, desert conditions to expand across north Africa. Not only did the Tethys shrinkage alter the mean climate of the region, it also enhanced the sensitivity of the African monsoon to orbital forcing, which subsequently became the major driver of Sahara extent fluctuations. These important climatic changes probably caused the shifts in Asian and African flora and fauna observed during the same period, with possible links to the emergence of early hominins in north Africa.
Assuntos
Clima Desértico , Oceanos e Mares , África do Norte , Animais , Evolução Biológica , História Antiga , Hominidae , Camada de Gelo , Modelos Teóricos , Chuva , Estações do AnoRESUMO
The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks.
Assuntos
Arqueologia , Mudança Climática , Dinâmica Populacional , Clima , Humanos , Modelos Teóricos , Portugal , EspanhaRESUMO
The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.
RESUMO
The history of Eastern African hominids has been linked to a progressive increase of open grassland during the past 8 million years. This trend was explained by global climatic processes, which do not account for the massive uplift of eastern African topography that occurred during this period. Atmosphere and biosphere simulations quantify the role played by these tectonic events. The reduced topographic barrier before 8 million years ago permitted a zonal circulation with associated moisture transport and strong precipitation. Our results suggest that the uplift itself led to a drastic reorganization of atmospheric circulation, engendering the strong aridification and paleoenvironmental changes suggested by the data.
RESUMO
Geological and palaeomagnetic studies indicate that ice sheets may have reached the Equator at the end of the Proterozoic eon, 800 to 550 million years ago, leading to the suggestion of a fully ice-covered 'snowball Earth'. Climate model simulations indicate that such a snowball state for the Earth depends on anomalously low atmospheric carbon dioxide concentrations, in addition to the Sun being 6 per cent fainter than it is today. However, the mechanisms producing such low carbon dioxide concentrations remain controversial. Here we assess the effect of the palaeogeographic changes preceding the Sturtian glacial period, 750 million years ago, on the long-term evolution of atmospheric carbon dioxide levels using the coupled climate-geochemical model GEOCLIM. In our simulation, the continental break-up of Rodinia leads to an increase in runoff and hence consumption of carbon dioxide through continental weathering that decreases atmospheric carbon dioxide concentrations by 1,320 p.p.m. This indicates that tectonic changes could have triggered a progressive transition from a 'greenhouse' to an 'icehouse' climate during the Neoproterozoic era. When we combine these results with the concomitant weathering effect of the voluminous basaltic traps erupted throughout the break-up of Rodinia, our simulation results in a snowball glaciation.