Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38593061

RESUMO

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Assuntos
Módulo de Elasticidade , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Vibrio cholerae/fisiologia , Escherichia coli/fisiologia , Escherichia coli/efeitos dos fármacos , Análise de Elementos Finitos , Membrana Celular/fisiologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos
2.
Bone Res ; 11(1): 50, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752132

RESUMO

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.


Assuntos
Adipócitos , Osteogênese , Animais , Camundongos , Osteogênese/genética , Adiposidade , Envelhecimento/genética , Artrodese , Camundongos Knockout , Agitação Psicomotora
3.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912250

RESUMO

Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.


Assuntos
Células-Tronco Adultas , Genes Homeobox , Humanos , Adulto , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Células-Tronco , Osso e Ossos
4.
Bone ; 157: 116324, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34998981

RESUMO

Tissue injury leads to the well-orchestrated mobilization of systemic and local innate and adaptive immune cells. During aging, immune cell recruitment is dysregulated, resulting in an aberrant inflammatory response that is detrimental for successful healing. Here, we precisely define the systemic and local immune cell response after femur fracture in young and aging mice and identify increased toll-like receptor signaling as a potential culprit for the abnormal immune cell recruitment observed in aging animals. Myd88, an upstream regulator of TLR-signaling lies at the core of this aging phenotype, and local treatment of femur fractures with a Myd88 antagonist in middle-aged mice reverses the aging phenotype of impaired fracture healing, thus offering a promising therapeutic target that could overcome the negative impact of aging on bone regeneration.


Assuntos
Fraturas Ósseas , Fator 88 de Diferenciação Mieloide , Imunidade Adaptativa , Envelhecimento , Animais , Regeneração Óssea , Consolidação da Fratura , Imunidade Inata , Camundongos , Fator 88 de Diferenciação Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA