Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 233: 123519, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758760

RESUMO

Hydrogels have been the material of choice for regenerative medicine applications due to their biocompatibility that can facilitate cellular attachment and proliferation. The present study aimed at constructing a porous hydrogel composite scaffold (chitosan, sodium alginate and elastin) for the repair of chronic skin wounds. Chitosan-based hydrogel incorporating varying concentrations of zinc oxide nanoparticles i.e. ZnO-NPs (0, 0.001, 0.01, 0.1 and 1 % w/w) as the antimicrobial agent tested against Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) exhibited good antibacterial activities. ZnO-NPs were characterized by UV visible spectroscopy, Scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Fabricated gels were characterized by SEM analysis, FTIR, XRD, swelling ratio, degradation behavior and controlled release kinetics of ZnO-NPs. In vitro cytocompatibility of the composite was investigated using human adipose stem cells (ADSCs) by MTT and lactate dehydrogenase (LDH) assay, further assessed by SEM analysis and PKH26 staining. The SEM and XRD analysis confirmed the successful loading of ZnO-NPs into these scaffolds. Fluorescence PKH26 stained images and SEM analysis of ADSCs seeded scaffolds revealed biocompatible nature. The findings suggested that the developed composite gels have potential clinically for tissue engineering and chronic wound treatment.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Humanos , Quitosana/química , Óxido de Zinco/química , Nanogéis , Alginatos/química , Staphylococcus aureus , Elastina , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Proliferação de Células , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
2.
Biomater Adv ; 142: 213150, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36306556

RESUMO

Delay in wound healing is a diabetes mellites resulting disorder causing persistent microbial infections, pain, and poor quality of life. This disorder is treated by several strategies using natural biomaterials, growth factors and stem cells molded into various scaffolds which possess the potential to accelerate the closure of impaired diabetic wounds. In this study, we developed a hydrogel patch using chitosan (CS) and polyethylene glycol (PEG) with laden bone marrow-derived mesenchymal stem cells (BMSCs) that were pretreated with fibroblast growth factor 21 (FGF21). The developed hydrogel patches were characterized by scanning electron microscopy and fourier transform infrared (FTIR) spectroscopy. After studying the swelling behavior, growth factor (FGF21) was used to modulate BMSC in the hyperglycemic environment. Later, FGF21 treated BMSC were embedded in CS/PEG hydrogel patch and their wound closure effect was assessed in diabetic rats. The results showed that CS/PEG hydrogel patches have good biocompatibility and possess efficient BMSC recruiting properties. The application of CS/PEG hydrogel patches accelerated wound closure in diabetic rats as compared to the control groups. However, the use of FGF21 pretreated BMSCs laded CS/PEG hydrogel patches further increased the therapeutic efficacy of wound closure in diabetic rats. This study demonstrated that the application of a hydrogel patch of CS/PEG with FGF21 pretreated BMSCs improves diabetic wound healing, but further studies are needed on larger animals before the use of these dressings in clinical trials.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Ratos , Animais , Hidrogéis/farmacologia , Diabetes Mellitus Experimental/terapia , Qualidade de Vida , Cicatrização , Células-Tronco , Materiais Biocompatíveis/química , Quitosana/química , Polietilenoglicóis/química
3.
BMJ Case Rep ; 14(7)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326119

RESUMO

Coexistence of idiopathic Parkinson's disease (iPD) and schizophrenia can pose great diagnostic and therapeutic challenges because of their pathophysiology. Our case highlights such challenges in management. We present a case of 73-year-old man who had parkinsonism for last several years and was also diagnosed with schizophrenia. Due to lack of collateral information about the onset of symptoms and clinical course, it was difficult to distinguish iPD from neuroleptic-induced parkinsonism. Even though, certain clinical findings may help to differentiate between the two conditions, single positron emission computerized tomography/DatScan was used to confirm the diagnosis of iPD. Treatment of coexisting iPD and schizophrenia can be challenging, and a delicate pharmacologic balance must be maintained to ensure adequate symptomatic control. Current evidence suggests that clozapine is a better choice for managing psychosis in these patients due to its unique receptor profile and better safety data.


Assuntos
Clozapina , Doença de Parkinson Secundária , Doença de Parkinson , Esquizofrenia , Idoso , Clozapina/efeitos adversos , Humanos , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico
4.
Life Sci ; 257: 118091, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32668325

RESUMO

AIM: Inflammatory and oxidative microenvironment at diabetic' wound site hinder the therapeutic efficacy of cell-based therapies in diabetic patients. The purpose of this study is to explore the competence of curcumin preconditioned human adipose derived cells (hASCs) in combination with platelet rich plasma (PRP) for the repair of wounds in diabetic rats. MAIN METHODS: The cytoprotective effect of curcumin preconditioning for hASCs against hyperglycemic stress was evaluated through analysis of cell morphology, viability, cytotoxicity, senescence, and scratch wound healing assays. Subsequently, the healing capacity of curcumin preconditioned hASCs (Cur-hASCs) added to PRP was examined in excisional wounded diabetic rat model. Healed skin biopsies were excised to analyze gene and protein expression of wound healing markers by qPCR and western blotting. Histopathological changes were observed through hematoxylin and eosin staining. KEY FINDINGS: We found that Cur-hASCs counteract the glucose stress much better than non-preconditioned hASCs by maintaining their cellular morphology and viability as well as metabolic potential. Further in vivo results revealed that, Cur-hASCs co-injected with PRP resulted in faster wound closure, improved fibroblast proliferation, increased neovascularization, marked reduction in inflammatory cells, and compact extracellular matrix with completely covered thick epithelium. Moreover, Cur-hASCs + PRP treatment significantly improved the expression of key healing markers such as pro-angiogenic (Vegf), dermal matrix deposition (Col1α1), cell migration (bFgf) and cell proliferation (Pcna) at wound site. SIGNIFICANCE: Our findings propose a combinatorial therapy (Cur-hASCs + PRP) as a novel modality to improve the efficacy of hASCs-based therapy for diabetic wounds.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Experimental/terapia , Plasma Rico em Plaquetas , Transplante de Células-Tronco/métodos , Cicatrização/fisiologia , Tecido Adiposo/citologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Combinada , Diabetes Mellitus Experimental/complicações , Feminino , Glucose/metabolismo , Humanos , Ratos , Ratos Wistar
5.
Int J Nanomedicine ; 15: 3511-3522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547010

RESUMO

INTRODUCTION: Diabetic wounds are challenging to treat due to a wide range of pathophysiological changes. Hypoxia is one of the predominant contributing factors of poor vascularization and chronicity in diabetic wounds. This study was designed to develop polycaprolactone (PCL)-based oxygen-releasing electrospun wound dressings and evaluate their efficacy for improved full thickness wound healing in diabetic rats. METHODS: PCL-based oxygen releasing wound dressings were made using electrospinning technology. The developed dressings were characterized in terms of physical as well as biological properties both in vitro and in vivo. E-spun nanofibrous dressings were physically characterized with scanning electron microscopy, Fourier-transform infrared spectroscopy, and Energy-dispersive X-ray spectroscopy. To study the likely impact of the fabricated wound dressings in hypoxic conditions, HIF-1α expression analysis was carried out both at gene and protein levels. Wound dressings were further evaluated for their healing potential for extensive wounds in diabetic rat models. RESULTS: The experimental results showed that the developed dressings were capable of continuously generating oxygen for up to 10 days. Cell studies further confirmed pronounced expression of HIF-1α at gene and protein levels in cells seeded on PCL-sodium percarbonate (SPC) and PCL scaffolds compared with the cells cultured on a tissue culture plate. Chorioallantoic membrane assay revealed the supportive role of oxygen releasing dressings on angiogenesis compared to the control group. Histological assessment of the regenerated skin tissues proved that full thickness wounds covered with SPC loaded PCL dressings had a comparatively better vascularized and compact extracellular matrix with completely covered thick epithelium. DISCUSSION: The developed oxygen generating polymeric nanofibrous wound dressings could potentially be used as an envisioned approach for the efficient recovery of chronic diabetic wounds.


Assuntos
Diabetes Mellitus/patologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/química , Poliésteres/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Bandagens , Bioensaio , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Nanofibras/ultraestrutura , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Pele/patologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Regen Med ; 15(3): 1441-1453, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32339058

RESUMO

Aim: Pretreatment of stem cells with antioxidants accelerates their ability to counter oxidative stress and is associated with the overall therapeutic outcome of their transplantation. Material & methods: Wharton Jelly derived mesenchymal stem cells (WJMSCs) were cultured and pretreated with various doses of antioxidants; Vitamin C (Vit C), Vitamin E (Vit E), Vitamin D3 (Vit D3) and their Cocktail, followed by exposure to in vitro heat injury. Assessment of WJMSCs survival, paracrine release, in vitro wound healing and expression of angiogenic and survival markers was conducted. Results: The results displayed an enhanced survival of WJMSCs especially in the case of Cocktail priming. Conclusion: Our data suggest that antioxidant pretreatment of WJMSCs strengthens the endurance of the cells, within stress conditions.


Assuntos
Antioxidantes/farmacologia , Resposta ao Choque Térmico , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/efeitos dos fármacos , Geleia de Wharton/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA