Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 1887-1902, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079376

RESUMO

Cold stress is a serious threat to global crop production and food security, but plant cold resistance is accompanied by reductions in growth and yield. In this study, we determined that the novel gene BcGSTF10 in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] is implicated in resistance to cold stress. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-REPEAT BINDING FACTOR (CBF) genes that enhance freezing tolerance in NHCC and in Arabidopsis. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, and this important understanding has the potential to inform the future development of strategies to breed crops that are both climate-resilient and high-yielding.


Assuntos
Arabidopsis , Brassica , Resposta ao Choque Frio , Glutationa Transferase/genética , Melhoramento Vegetal , Brassica/genética , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140475

RESUMO

Based on the established efficient regeneration system for watercress in our laboratory, we optimized the processes of pretreatment, co-culture, and differentiation culture. Through GFP fluorescence and PCR identification, we successfully obtained transgenic watercress with the DR5 gene, which allowed us to investigate the distribution details of auxin in the growth process of watercress. Our findings provide an effective method for gene function research and lay the foundation for innovative utilization of germplasm resources of watercress.

3.
Plants (Basel) ; 12(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895987

RESUMO

A well-developed root system is crucial for the rapid growth, asexual reproduction, and adaptation to the drought environments of the watercress. After analyzing the transcriptome of the watercress root system, we found that a high concentration of auxin is key to its adaptation to dry conditions. For the first time, we obtained DR5::EGFP watercress, which revealed the dynamic distribution of auxin in watercress root development under drought conditions. Via the application of naphthylphthalamic acid (NPA), 4-biphenylboronic acid (BBO), ethylene (ETH), abscisic acid (ABA), and other factors, we confirmed that auxin has a significant impact on the root development of watercress. Finally, we verified the role of auxin in root development using 35S::NoYUC8 watercress and showed that the synthesis of auxin in the root system mainly depends on the tryptophan, phenylalanine, and tyrosine amino acids (TAA) synthesis pathway. After the level of auxin increases, the root system of the watercress develops toward adaptation to dry environments. The formation of root aerenchyma disrupts the concentration gradient of auxin and is a key factor in the differentiation of lateral root primordia and H cells in watercress.

4.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421784

RESUMO

The MYB60 gene belongs to the R2R3-MYB subfamily, which includes the MYB31/30/96/94 genes. Although these genes have been shown to respond to heat and drought stresses, their role in flavonoid synthesis remains unclear. In this study, NoMYB60 was cloned from watercress and its structure and function were analyzed. Sequence structure analysis showed that NoMYB60 had a highly conserved R2R3 DNA-binding region at the N-terminus. Under the treatment of ABA, SA or MeJA, the expression level of NoMYB60 first significantly increased and then decreased, indicating that ABA, SA and MeJA positively regulated NoMYB60. The subcellular localization of NoMYB60-GFP indicated that NoMYB60 was localized in the nuclear region, which is consistent with the molecular characterization of the transcription factor. Gene silencing experiments were also performed to further test the function of NoMYB60. The result showed that virus-induced silencing of NoMYB60 affected the expression of enzyme genes in flavonoid synthesis pathways and promoted the synthesis of flavonoids. Moreover, we discovered that NoMYB60 interacts with NoBEH1/2. In this study, provides a reference for research on the regulation mechanism of flavonoid synthesis in Cruciferae and other crops.


Assuntos
Nasturtium , Nasturtium/genética , Nasturtium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Flavonoides/genética , Clonagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA