Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(1): 108608, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174317

RESUMO

Magnetic resonance imaging (MRI) is a widely used imaging modality in clinics for medical disease diagnosis, staging, and follow-up. Deep learning has been extensively used to accelerate k-space data acquisition, enhance MR image reconstruction, and automate tissue segmentation. However, these three tasks are usually treated as independent tasks and optimized for evaluation by radiologists, thus ignoring the strong dependencies among them; this may be suboptimal for downstream intelligent processing. Here, we present a novel paradigm, full-stack learning (FSL), which can simultaneously solve these three tasks by considering the overall imaging process and leverage the strong dependence among them to further improve each task, significantly boosting the efficiency and efficacy of practical MRI workflows. Experimental results obtained on multiple open MR datasets validate the superiority of FSL over existing state-of-the-art methods on each task. FSL has great potential to optimize the practical workflow of MRI for medical diagnosis and radiotherapy.

2.
IEEE J Biomed Health Inform ; 27(12): 5946-5957, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37729562

RESUMO

U-shaped networks have become prevalent in various medical image tasks such as segmentation, and restoration. However, most existing U-shaped networks rely on centralized learning which raises privacy concerns. To address these issues, federated learning (FL) and split learning (SL) have been proposed. However, achieving a balance between the local computational cost, model privacy, and parallel training remains a challenge. In this articler, we propose a novel hybrid learning paradigm called Dynamic Corrected Split Federated Learning (DC-SFL) for U-shaped medical image networks. To preserve data privacy, including the input, model parameters, label and output simultaneously, we propose to split the network into three parts hosted by different parties. We propose a Dynamic Weight Correction Strategy (DWCS) to stabilize the training process and avoid the model drift problem due to data heterogeneity. To further enhance privacy protection and establish a trustworthy distributed learning paradigm, we propose to introduce additively homomorphic encryption into the aggregation process of client-side model, which helps prevent potential collusion between parties and provides a better privacy guarantee for our proposed method. The proposed DC-SFL is evaluated on various medical image tasks, and the experimental results demonstrate its effectiveness. In comparison with state-of-the-art distributed learning methods, our method achieves competitive performance.


Assuntos
Diagnóstico por Imagem , Aprendizado de Máquina , Privacidade
3.
Opt Express ; 27(9): 12289-12307, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052772

RESUMO

Optical coherence tomography (OCT) has become a very promising diagnostic method in clinical practice, especially for ophthalmic diseases. However, speckle noise and low sampling rates have intensively reduced the quality of OCT images, which prevents the development of OCT-assisted diagnosis. Therefore, we propose a generative adversarial network-based approach (named SDSR-OCT) to simultaneously denoise and super-resolve OCT images. Moreover, we trained three different super-resolution models with different upscale factors (2× , 4× and 8×) to adapt to the corresponding downsampling rates. We also quantitatively and qualitatively compared our proposed method with some well-known algorithms. The experimental results show that our approach can effectively suppress speckle noise and can super-resolve OCT images at different scales.

4.
Med Image Anal ; 55: 165-180, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31085444

RESUMO

Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in medical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. In this paper, inspired by the idea of deep learning, we introduce an MRI denoising method based on the residual encoder-decoder Wasserstein generative adversarial network (RED-WGAN). Specifically, to explore the structure similarity between neighboring slices, a 3D configuration is utilized as the basic processing unit. Residual autoencoders combined with deconvolution operations are introduced into the generator network. Furthermore, to alleviate the oversmoothing shortcoming of the traditional mean squared error (MSE) loss function, the perceptual similarity, which is implemented by calculating the distances in the feature space extracted by a pretrained VGG-19 network, is incorporated with the MSE and adversarial losses to form the new loss function. Extensive experiments are implemented to assess the performance of the proposed method. The experimental results show that the proposed RED-WGAN achieves performance superior to several state-of-the-art methods in both simulated and real clinical data. In particular, our method demonstrates powerful abilities in both noise suppression and structure preservation.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA