Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2311750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459645

RESUMO

The commercialization of lithium-sulfur (Li-S) battery is seriously hindered by the shuttle behavior of lithium (Li) polysulfide, slow conversion kinetics, and Li dendrite growth. Herein, a novel hierarchical p-type iron nitride and n-type vanadium nitride (p-Fe2N/n-VN) heterostructure with optimal electronic structure, confined in vesicle-like N-doped nanofibers (p-Fe2N/n-VN⊂PNCF), is meticulously constructed to work as "one stone two birds" dual-functional hosts for both the sulfur cathode and Li anode. As demonstrated, the d-band center of high-spin Fe atom captures more electrons from V atom to realize more π* and moderate σ* bond electron filling and orbital occupation; thus, allowing moderate adsorption intensity for polysulfides and more effective d-p orbital hybridization to improve reaction kinetics. Meanwhile, this unique structure can dynamically balance the deposition and transport of Li on the anode; thereby, more effectively inhibiting Li dendrite growth and promoting the formation of a uniform solid electrolyte interface. The as-assembled Li-S full batteries exhibit the conspicuous capacities and ultralong cycling lifespan over 2000 cycles at 5.0 C. Even at a higher S loading (20 mg cm-2) and lean electrolyte (2.5 µL mg-1), the full cells can still achieve an ultrahigh areal capacity of 16.1 mAh cm-2 after 500 cycles at 0.1 C.

2.
Entropy (Basel) ; 25(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136509

RESUMO

In encryption technology, image scrambling is a common processing operation. This paper proposes a quantum version of the 3D Mobius scrambling transform based on the QRCI model, which changes not only the position of pixels but also the gray values. The corresponding quantum circuits are devised. Furthermore, an encryption scheme combining the quantum 3D Mobius transform with the 3D hyper-chaotic Henon map is suggested to protect the security of image information. To facilitate subsequent processing, the RGB color image is first represented with QRCI. Then, to achieve the pixel-level permutation effect, the quantum 3D Mobius transform is applied to scramble bit-planes and pixel positions. Ultimately, to increase the diffusion effect, the scrambled image is XORed with a key image created by the 3D hyper-chaotic Henon map to produce the encrypted image. Numerical simulations and result analyses indicate that our designed encryption scheme is secure and reliable. It offers better performance in the aspect of key space, histogram variance, and correlation coefficient than some of the latest algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA