Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS One ; 19(1): e0297473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277374

RESUMO

The Ovate Family Proteins (OFPs) gene family houses a class of proteins that are involved in regulating plant growth and development. To date, there is no report of the simultaneous functional characterization of this gene family in all members of U's Triangle of Brassica. Here, we retrieved a combined total of 256 OFP protein sequences and analyzed their chromosomal localization, gene structure, conserved protein motif domains, and the pattern of cis-acting regulatory elements. The abundance of light-responsive elements like G-box, MRE, and GT1 motif suggests that OFPs are sensitive to the stimuli of light. The protein-protein interaction network analysis revealed that OFP05 and its orthologous genes were involved in regulating the process of transcriptional repression through their interaction with homeodomain transcription factors like KNAT and BLH. The presence of domains like DNA binding 2 and its superfamily speculated the involvement of OFPs in regulating gene expression. The biotic and abiotic stress, and the tissue-specific expression analysis of the RNA-seq datasets revealed that some of the genes such as BjuOFP30, and BnaOFP27, BolOFP11, and BolOFP10 were highly upregulated in seed coat at the mature stage and roots under various chemical stress conditions respectively which suggests their crucial role in plant growth and development processes. Experimental validation of prominent BnaOFPs such as BnaOFP27 confirmed their involvement in regulating gene expression under salinity, heavy metal, drought, heat, and cold stress. The GO and KEGG pathway enrichment analysis also sheds light on the involvement of OFPs in regulating plant growth and development. These findings have the potential to serve as a forerunner for future studies in terms of functionally diverse analysis of the OFP gene family in Brassica and other plant species.


Assuntos
Brassica , Brassica/genética , Filogenia , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Mapas de Interação de Proteínas , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta
2.
BMC Plant Biol ; 24(1): 20, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166652

RESUMO

Excess salinity can affect the growth and development of all plants. Salinization jeopardizes agroecosystems, induces oxidative reactions in most cultivated plants and reduces biomass which affects crop yield. Some plants are affected more than others, depending upon their ability to endure the effects of salt stress. Cotton is moderately tolerant to salt stress among cultivated crops. The fundamental tenet of plant breeding is genetic heterogeneity in available germplasm for acquired characteristics. Variation for salinity tolerance enhancing parameters (morphological, physiological and biochemical) is a pre-requisite for the development of salt tolerant cotton germplasm followed by indirect selection or hybridization programs. There has been a limited success in the development of salt tolerant genotypes because this trait depends on several factors, and these factors as well as their interactions are not completely understood. However, advances in biochemical and molecular techniques have made it possible to explore the complexity of salt tolerance through transcriptomic profiling. The focus of this article is to discuss the issue of salt stress in crop plants, how it alters the physiology and morphology of the cotton crop, and breeding strategies for the development of salinity tolerance in cotton germplasm.


Assuntos
Melhoramento Vegetal , Tolerância ao Sal , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Fenótipo , Genótipo , Salinidade
3.
Sci Rep ; 13(1): 20503, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993468

RESUMO

Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.


Assuntos
Dalbergia , Fabaceae , Transcriptoma , Dalbergia/genética , Fabaceae/genética , Anotação de Sequência Molecular , Melhoramento Vegetal , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA/genética
4.
BMC Plant Biol ; 23(1): 508, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872477

RESUMO

BACKGROUND: Drought is one of the limiting factors for quality and quantity of cotton lint in tropical and sub-tropical regions. Therefore, development of drought tolerant cotton genotypes have become indispensable. The identification of drought tolerant genotypes is pre-requisite to develop high yielding cultivars suitable for drought affected areas. METHODS: Forty upland cotton accessions were selected on the basis of their adaptability and yield. The collected germplasm accessions were evaluated at seedling stage on the basis of morphological, physiological and biochemical parameters. The experiment was conducted under controlled conditions in greenhouse where these genotypes were sown under different levels of drought stress by following factorial under completely randomized design. The data were collected at seedling stages for root and shoot lengths, relative leaf water content, excised leaf water losses, peroxidase content and hydrogen peroxide concentrations in leaf tissues. RESULTS: The biometrical analysis revealed that germplasm is significantly varied for recorded parameters, likewise interaction of genotypes and water stress was also significantly varied. The cotton germplasm was categorized in eight clusters based on response to water stress. The genotype Cyto-124 exhibited lowest H2O2 content under drought conditions, minimum excised leaf water loss under stress environment was exhibited by genotypes Ali Akber-802 and CEMB-33. Overall, on the basis of morphological and biochemical traits, SL-516 and Cyto-305 were found to be drought tolerant. Genotypes 1852 - 511, Stoneville 15-17 and Delta Pine-55 showed low values for root length, peroxidase activity and higher value for H2O2 contents. On the basis of these finding, these genotypes were declared as drought susceptible. CONCLUSION: The categorization of cotton germplasm indicating the differential response of various parameters under the control and drought stress conditions. The recorded parameters particularly relative leaf water contents and biochemical assays could be utilized to screen large number of germplasm of cotton for water deficit conditions. Besides, the drought tolerant genotypes identified in this research can be utilized in cotton breeding programs for the development of improved cultivars.


Assuntos
Desidratação , Secas , Peróxido de Hidrogênio , Melhoramento Vegetal , Genótipo , Plântula/genética , Gossypium/genética , Peroxidases/genética
5.
BMC Plant Biol ; 23(1): 250, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173631

RESUMO

BACKGROUND: Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS: Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS: The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.


Assuntos
Brassica , Transcriptoma , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Brassica/genética , Brassica/metabolismo , Filogenia , Melhoramento Vegetal , Ácidos Graxos , Regulação da Expressão Gênica de Plantas
6.
BMC Plant Biol ; 23(1): 172, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003962

RESUMO

BACKGROUND: Plant aquaporins are critical genetic players performing multiple biological functions, especially climate resilience and water-use efficiency. Their genomic diversity across genus Oryza is yet to be explored. RESULTS: This study identified 369 aquaporin-encoding genes from 11 cultivated and wild rice species and further categorized these into four major subfamilies, among which small basic intrinsic proteins are speculated to be ancestral to all land plant aquaporins. Evolutionarily conserved motifs in peptides of aquaporins participate in transmembrane transport of materials and their relatively complex gene structures provide an evolutionary playground for regulation of genome structure and transcription. Duplication and evolution analyses revealed higher genetic conservation among Oryza aquaporins and strong purifying selections are assisting in conserving the climate resilience associated functions. Promoter analysis highlighted enrichment of gene upstream regions with cis-acting regulatory elements involved in diverse biological processes, whereas miRNA target site prediction analysis unveiled substantial involvement of osa-miR2102-3p, osa-miR2927 and osa-miR5075 in post-transcriptional regulation of gene expression patterns. Moreover, expression patterns of japonica aquaporins were significantly perturbed in response to different treatment levels of six phytohormones and four abiotic stresses, suggesting their multifarious roles in plants survival under stressed environments. Furthermore, superior haplotypes of seven conserved orthologous aquaporins for higher thousand-grain weight are reported from a gold mine of 3,010 sequenced rice pangenomes. CONCLUSIONS: This study unveils the complete genomic atlas of aquaporins across genus Oryza and provides a comprehensive genetic resource for genomics-assisted development of climate-resilient rice cultivars.


Assuntos
Aquaporinas , Oryza , Oryza/metabolismo , Genômica , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
7.
Sci Rep ; 13(1): 3577, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864046

RESUMO

Very long-chain fatty acids (VLCFAs) possess more than twenty carbon atoms and are the major components of seed storage oil, wax, and lipids. FAE (Fatty Acid Elongation) like genes take part in the biosynthesis of VLCFAs, growth regulation, and stress responses, and are further comprised of KCS (Ketoacyl-CoA synthase) and ELO (Elongation Defective Elongase) sub-gene families. The comparative genome-wide analysis and mode of evolution of KCS and ELO gene families have not been investigated in tetraploid Brassica carinata and its diploid progenitors. In this study, 53 KCS genes were identified in B. carinata compared to 32 and 33 KCS genes in B. nigra and B. oleracea respectively, which suggests that polyploidization might has impacted the fatty acid elongation process during Brassica evolution. Polyploidization has also increased the number of ELO genes in B. carinata (17) over its progenitors B. nigra (7) and B. oleracea (6). Based on comparative phylogenetics, KCS, and ELO proteins can be classified into eight and four major groups, respectively. The approximate date of divergence for duplicated KCS and ELO genes varied from 0.03 to 3.20 million years ago (MYA). Gene structure analysis indicated that the maximum number of genes were intron-less and remained conserved during evolution. The neutral type of selection seemed to be predominant in both KCS and ELO genes evolution. String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the activation of transcription of ELO/KCS genes. The presence of biotic and abiotic stress-related cis-regulatory elements in the promoter region suggests that both KCS and ELO genes might also play their role in stress tolerance. The expression analysis of both gene family members reflect their preferential seed-specific expression, especially during the mature embryo development stage. Furthermore, some KCS and ELO genes were found to be specifically expressed under heat stress, phosphorus starvation, and Xanthomonas campestris infection. The current study provides a basis to understand the evolution of both KCS and ELO genes in fatty acid elongation and their role in stress tolerance.


Assuntos
Brassica , Sementes , Filogenia , Sementes/genética , Íntrons , Brassica/genética , Ácidos Graxos/genética
8.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361700

RESUMO

Abiotic stresses, such as drought, salinity, heat, cold, and heavy metals, are associated with global climate change and hamper plant growth and development, affecting crop yields and quality. However, the negative effects of abiotic stresses can be mitigated through exogenous treatments using small biomolecules. For example, the foliar application of melatonin provides the following: it protects the photosynthetic apparatus; it increases the antioxidant defenses, osmoprotectant, and soluble sugar levels; it prevents tissue damage and reduces electrolyte leakage; it improves reactive oxygen species (ROS) scavenging; and it increases biomass, maintains the redox and ion homeostasis, and improves gaseous exchange. Glutathione spray upregulates the glyoxalase system, reduces methylglyoxal (MG) toxicity and oxidative stress, decreases hydrogen peroxide and malondialdehyde accumulation, improves the defense mechanisms, tissue repairs, and nitrogen fixation, and upregulates the phytochelatins. The exogenous application of proline enhances growth and other physiological characteristics, upregulates osmoprotection, protects the integrity of the plasma lemma, reduces lipid peroxidation, increases photosynthetic pigments, phenolic acids, flavonoids, and amino acids, and enhances stress tolerance, carbon fixation, and leaf nitrogen content. The foliar application of glycine betaine improves growth, upregulates osmoprotection and osmoregulation, increases relative water content, net photosynthetic rate, and catalase activity, decreases photorespiration, ion leakage, and lipid peroxidation, protects the oxygen-evolving complex, and prevents chlorosis. Chemical priming has various important advantages over transgenic technology as it is typically more affordable for farmers and safe for plants, people, and animals, while being considered environmentally acceptable. Chemical priming helps to improve the quality and quantity of the yield. This review summarizes and discusses how exogenous melatonin, glutathione, proline, and glycine betaine can help crops combat abiotic stresses.


Assuntos
Melatonina , Melatonina/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Prolina/farmacologia , Prolina/metabolismo , Glutationa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Fisiológico/fisiologia
9.
Genes (Basel) ; 13(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140806

RESUMO

Populus trichocarpa (Black cottonwood) is a dominant timber-yielding tree that has become a notable model plant for genome-level insights in forest trees. The efficient transport and solubility of various glycoside-associated compounds is linked to Family-1 UDP-glycosyltransferase (EC 2.4.1.x; UGTs) enzymes. These glycosyltransferase enzymes play a vital role in diverse plant functions, such as regulation of hormonal homeostasis, growth and development (seed, flower, fiber, root, etc.), xenobiotic detoxification, stress response (salt, drought, and oxidative), and biosynthesis of secondary metabolites. Here, we report a genome-wide analysis of the P. trichocarpa genome that identified 191 putative UGTs distributed across all chromosomes (with the exception of chromosome 20) based on 44 conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. Phylogenetic analysis of the 191 Populus UGTs together with 22 referenced UGTs from Arabidopsis and maize clustered the putative UGTs into 16 major groups (A-P). Whole-genome duplication events were the dominant pattern of duplication among UGTs in Populus. A well-conserved intron insertion was detected in most intron-containing UGTs across eight examined eudicots, including Populus. Most of the UGT genes were found preferentially expressed in leaf and root tissues in general. The regulation of putative UGT expression in response to drought, salt and heat stress was observed based on microarray and available RNA sequencing datasets. Up- and down-regulated UGT expression models were designed, based on transcripts per kilobase million values, confirmed their maximally varied expression under drought, salt and heat stresses. Co-expression networking of putative UGTs indicated their maximum co-expression with cytochrome P450 genes involved in triterpenoid biosynthesis. Our results provide an important resource for the identification of functional UGT genes to manipulate abiotic stress responsive glycosylation in Populus.


Assuntos
Arabidopsis , Populus , Triterpenos , Arabidopsis/metabolismo , Glicosídeos , Glicosilação , Glicosiltransferases/genética , Filogenia , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética , Difosfato de Uridina/metabolismo , Xenobióticos
10.
Plants (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616290

RESUMO

The regeneration of the high-yielding multilocular types has not been attempted, although successful regeneration and transformation in brassica have been done. Here, we report efficient regeneration and transformation protocols for two B. rapa genotypes; UAF11 and Toria. The B. rapa cv UAF11 is a multilocular, non-shattering, and high-yielding genotype, while Toria is the bilocular type. For UAF11 8 shoots and for Toria 7 shoots, explants were observed on MS supplemented with 3 mg/L BAP + 0.4 mg/L NAA + 0.01 mg/L GA3 + 5 mg/L AgNO3 + 0.75 mg/L Potassium Iodide (KI), MS salt supplemented with 1 mg/L IBA and 0.37 mg/L KI produced an equal number of roots (3) in UAF11 and Toria. For the establishment of transformation protocols, Agrobacterium-mediated floral dip transformation was attempted using different induction media, infection time, and flower stages. The induction medium III yielded a maximum of 7.2% transformants on half-opened flowers and 5.2% transformants on fully opened flowers in UAF11 and Toria, respectively, with 15 min of inoculation. This study would provide the basis for the improvement of tissue culture and transformation protocols in multilocular and bilocular Brassica genotypes.

11.
Front Genet ; 12: 818880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111207

RESUMO

MADS-box gene family members play multifarious roles in regulating the growth and development of crop plants and hold enormous promise for bolstering grain yield potential under changing global environments. Bread wheat (Triticum aestivum L.) is a key stable food crop around the globe. Until now, the available information concerning MADS-box genes in the wheat genome has been insufficient. Here, a comprehensive genome-wide analysis identified 300 high confidence MADS-box genes from the publicly available reference genome of wheat. Comparative phylogenetic analyses with Arabidopsis and rice MADS-box genes classified the wheat genes into 16 distinct subfamilies. Gene duplications were mainly identified in subfamilies containing unbalanced homeologs, pointing towards a potential mechanism for gene family expansion. Moreover, a more rapid evolution was inferred for M-type genes, as compared with MIKC-type genes, indicating their significance in understanding the evolutionary history of the wheat genome. We speculate that subfamily-specific distal telomeric duplications in unbalanced homeologs facilitate the rapid adaptation of wheat to changing environments. Furthermore, our in-silico expression data strongly proposed MADS-box genes as active guardians of plants against pathogen insurgency and harsh environmental conditions. In conclusion, we provide an entire complement of MADS-box genes identified in the wheat genome that could accelerate functional genomics efforts and possibly facilitate bridging gaps between genotype-to-phenotype relationships through fine-tuning of agronomically important traits.

12.
Genomics ; 113(1 Pt 2): 1029-1043, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157261

RESUMO

Rice is an important cereal crop that serves as staple food for more than half of the world population. Abiotic stresses resulting from changing climatic conditions are continuously threating its yield and production. Genes in APETALA-2 (AP2) family encode transcriptional regulators implicated during regulation of developmental processes and abiotic stress responses but their identification and characterization in indica rice was still missing. In this context, twenty-six genes distributed among eleven chromosomes in Indica rice encoding AP2 transcription-factor subfamily were identified and their diverse haplotypes were studied. Phylogenetic analysis of OsAP2 TF family-members grouped them into three clades indicating conservation of clades among cereals. Segmental duplications were observed to be principal route of evolution, supporting the higher positive selection-pressure, which were estimated to be originated about 10.57 to 56.72 million years ago (MYA). Conserved domain analysis and intron-exon distribution pattern of identified OsAP2s revealed their exclusive distribution among the specific clades of the phylogenetic tree. Moreover, the members of osa-miR172 family were also identified potentially targeting four OsAP2 genes. The real-time quantitative expression profiling of OsAP2s under heat stress conditions in contrasting indica rice genotypes revealed the differential expression pattern of OsAP2s (6 genes up-regulated and 4 genes down-regulated) in stress- and genotype-dependent manner. These findings unveiled the evolutionary pathways of AP2-TF in rice, and can help the functional characterization under developmental and stress responses.


Assuntos
Evolução Molecular , Resposta ao Choque Térmico , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Seleção Genética , Fatores de Transcrição/metabolismo
13.
GM Crops Food ; 11(1): 1-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31679447

RESUMO

Transgenic technologies have emerged as a powerful tool for crop improvement in terms of yield, quality, and quantity in many countries of the world. However, concerns also exist about the possible risks involved in transgenic crop cultivation. In this review, literature is analyzed to gauge the real intensity of the issues caused by environmental stresses in Pakistan. In addition, the research work on genetically modified organisms (GMOs) development and their performance is analyzed to serve as a guide for the scientists to help them select useful genes for crop transformation in Pakistan. The funding of GMOs research in Pakistan shows that it does not follow the global trend. We also present socio-economic impact of GM crops and political dimensions in the seed sector and the policies of the government. We envisage that this review provides guidelines for public and private sectors as well as the policy makers in Pakistan and in other countries that face similar environmental threats posed by the changing climate.


Assuntos
Agricultura , Produtos Agrícolas , Animais , Animais Geneticamente Modificados , Paquistão , Plantas Geneticamente Modificadas
14.
Genes Genomics ; 41(4): 467-481, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30637579

RESUMO

BACKGROUND: WRKY proteins play a vital role in the regulation of several imperative plant metabolic processes and pathways, especially under biotic and abiotic stresses. Although WRKY genes have been characterized in various major crop plants, their identification and characterization in pulse legumes is still in its infancy. Chickpea (Cicer arietinum L.) is the most important pulse legume grown in arid and semi-arid tropics. OBJECTIVE: In silico identification and characterization of WRKY transcription factor-encoding genes in chickpea genome. METHODS: For this purpose, a systematic genome-wide analysis was carried out to identify the non-redundant WRKY transcription factors in the chickpea genome. RESULTS: We have computationally identified 70 WRKY-encoding non-redundant genes which were randomly distributed on all the chickpea chromosomes except chromosome 8. The evolutionary phylogenetic analysis classified the WRKY proteins into three major groups (I, II and III) and seven sub-groups (IN, IC, IIa, IIb, IIc, IId and IIe). The gene structure analysis revealed the presence of 2-7 introns among the family members. Along with the presence of absolutely conserved signatory WRKY domain, 19 different domains were also found to be conserved in a group-specific manner. Insights of gene duplication analysis revealed the predominant role of segmental duplications for the expansion of WRKY genes in chickpea. Purifying selection seems to be operated during the evolution and expansion of paralogous WRKY genes. The transcriptome data-based in silico expression analysis revealed the differential expression of CarWRKY genes in root and shoot tissues under salt, drought, and cold stress conditions. Moreover, some of these genes showed identical expression pattern under these stresses, revealing the possibility of involvement of these genes in conserved abiotic stress-response pathways. CONCLUSION: This genome-wide computational analysis will serve as a base to accelerate the functional characterization of WRKY TFs especially under biotic and abiotic stresses.


Assuntos
Cicer/genética , Resposta ao Choque Frio , Proteínas de Plantas/genética , Estresse Salino , Fatores de Transcrição/genética , Cicer/metabolismo , Sequência Conservada , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
Rice (N Y) ; 11(1): 34, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799607

RESUMO

BACKGROUND: Rice is a drought susceptible crop. A symbiotic association between rice and mycorrhizal fungi could effectively protect the plant against sudden or frequent episodes of drought. Due to its extensive network of hyphae, the endophyte is able to deeply explore the soil and transfer water and minerals to the plant, some of them playing an important role in mitigating the effects of drought stress. Moreover, the endophyte could modify the expression of drought responsive genes and regulate antioxidants. RESULTS: Three rice genotypes, WC-297 (drought tolerant), Caawa (moderately drought tolerant) and IR-64 (drought susceptible) were inoculated with Piriformospora indica (P. indica), a dynamic endophyte. After 20 days of co-cultivation with the fungus, rice seedlings were subjected to 15% polyethylene glycol-6000 induced osmotic stress. P. indica improved the growth of rice seedlings. It alleviated the destructive effects of the applied osmotic stress. This symbiotic association increased seedling biomass, the uptake of phosphorus and zinc, which are functional elements for rice growth under drought stress. It boosted the chlorophyll fluorescence, increased the production of proline and improved the total antioxidant capacity in leaves. The association with the endophyte also up regulated the activity of the Pyrroline-5-carboxylate synthase (P5CS), which is critical for the synthesis of proline. CONCLUSION: A mycorrhizal association between P. indica and rice seedlings provided a multifaceted protection to rice plants under osmotic stress (- 0.295 MPa).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA