RESUMO
Several hypotheses have been proposed to explain the high rate of disease association of HLA-B27 with ankylosing spondylitis (AS), including formation of disulfide-bonded dimers and misfolding of the heavy chain (HC), involving formation of high molecular weight (HMW) multimers. Recently, we have shown that the HMW entities of non-disease associated (non-DA) subtypes cause activation of endosomal-lysosomal pathways, while disease-associated (DA) subtypes of HLA-B27 cause activation of autophagy and unfolded protein response (UPR) pathways. In this paper, we seek an explanation for the failure of these pathways to degrade the HMW entities of DA subtypes of HLA-B27, using a combination of in vitro assays, using extracellular domains of heavy chains (EDHC), as well as in vivo assays, using stable transfectants of the full lengths of heavy chains (FLHC) of DA and non-DA subtypes. Our data shows that both DA and non-DA subtypes form HMW entities. However, non-DA HMW entities display far greater levels of degradation than DA HMW species. Non-DA EDHC display greater loss of structure at lysosomal pH in vitro. This was confirmed by experiments showing that (i) DA FLHCs co-localize with LAMP1, and (ii) induction of autophagy by rapamycin causes significant decrease in levels of non-DA HMW entities, but not that of DA HMW entities. These results point towards lack of facile lysosomal clearance of FLHCs of DA subtypes, suggesting that disease association of HLA-B27 subtypes is correlated with higher persistence of HMW entities in the low pH of lysosomes, with higher potential to trigger immune response.
Assuntos
Antígeno HLA-B27 , Espondilite Anquilosante , Humanos , Antígeno HLA-B27/genética , Dobramento de Proteína , Lisossomos , Dissulfetos , Sirolimo , Concentração de Íons de HidrogênioRESUMO
The MHC Class I molecule, HLA-B27, is strongly linked with development of the inflammatory arthritic disease, ankylosing spondylitis (AS); whereas the B*2705 subtype shows strong association, B*2709 is not associated with disease, even though the two subtypes differ in only a single residue at position 116. Currently, attention is focused on the misfolding propensities of these two subtypes, including studies of disulfide-linked dimers and non-covalently formed high molecular weight (HMW) aggregates. Using mutants retaining only a single cysteine at positions C67 or C164, and using a cysteine-reactive, environment-sensitive, fluorescence probe (acrylodan), we find that within the same overall population of identical single-cysteine HLA-B27 molecules, there exist sub-populations which (a) possess free cysteines which react with acrylodan, (b) form disulfide-linked dimers, and (c) form HMW aggregates. Further, using acrylodan fluorescence, we find (d) that the α1 and α2 domains unfold independently of each other in HMW aggregates, (e) that these two domains of B*2709 are less stable to chemical and thermal denaturation than the corresponding domains of B*2705, suggesting easier clearance of misfolded molecules in the former, and (f) C67 is much more exposed in B*2705 than in B*2709, which could potentially explain how B*2705 more easily forms C67-mediated disulfide-bonded dimers.
Assuntos
Antígeno HLA-B27/química , Antígeno HLA-B27/genética , Humanos , Peso Molecular , Mutação de Sentido Incorreto , Desnaturação Proteica , Domínios Proteicos , Estabilidade Proteica , Espondilite Anquilosante/genética , Ureia/químicaRESUMO
A self-derived-peptide with the same amino acid sequence (N-RRYLENGKETLQR-C) as residues 169-181 of the human leukocyte antigen (HLA) B27 heavy chain is known to bind to MHC Class I complexes containing the HLA-B27 heavy chain. This observation has been invoked previously in at least two different (but related) molecular explanations for the disease-association of the HLA-B27 allele. Here, we use a combination of fluorescence polarization, competitive inhibition and gel filtration chromatographic studies to show that a fluorescently-labeled peptide of the above sequence binds to two disease-associated subtypes of HLA-B27 (namely HLA-B*27:04 and HLA-B*27:05) but not to non-disease-associated subtypes (HLA-B*27:06 or HLA-B*27:09). This differential binding behavior is seen both in (a) peptide binding to complexes of heavy chain (HLA-B27) and light chain (ß2 microglobulin), and in (b) peptide binding to ß2 microglobulin-free heavy chains in the aggregated state. Such subtype-specific differences are not seen with two other control peptides known to bind to HLA-B27. Our results support the likelihood of differential peptide binding holding at least one of the keys to HLA-B27's disease association.