Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Neurobiol Dis ; 182: 106151, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172910

RESUMO

In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-ß (Aß) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aß-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.


Assuntos
Doença de Alzheimer , Interneurônios , Sono , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
3.
Cells ; 11(21)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359822

RESUMO

Astrocytes contribute to glutamatergic signalling, which is required for hypoglycaemia counterregulation and is impaired by recurrent insulin-induced hypoglycaemia. This study examined the glutamate response of astrocytes when challenged with acute and recurrent low glucose (RLG) exposure. The metabolic responses of cortical (CRTAS) and hypothalamic (HTAS) primary rat astrocytes were measured in acute and recurrent low glucose using extracellular flux analyses. RLG caused mitochondrial adaptations in both HTAS and CRTAS, many of which were attenuated by glutamate exposure during low glucose (LG) treatments. We observed an increase in capacity of HTAS to metabolise glutamine after RLG exposure. Demonstrating astrocytic heterogeneity in the response to LG, CRTAS increased cellular acidification, a marker of glycolysis in LG, whereas this decreased in HTAS. The directional change in intracellular Ca2+ levels of each cell type, correlated with the change in extracellular acidification rate (ECAR) during LG. Further examination of glutamate-induced Ca2+ responses in low glucose treated CRTAS and HTAS identified sub-populations of glucose-excited- and glucose-inhibited-like cells with differing responses to glutamate. Lastly, release of the gliotransmitter ATP by HTAS was elevated by RLG, both with and without concurrent glutamate exposure. Therefore, hypothalamic astrocytes adapt to RLG by increasing glutamate uptake and oxidation in a manner that prevents RLG-induced mitochondrial adaptations.


Assuntos
Ácido Glutâmico , Hipoglicemia , Ratos , Animais , Ácido Glutâmico/metabolismo , Astrócitos/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Mitocôndrias/metabolismo
4.
J Neurosci ; 42(37): 7094-7109, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35927034

RESUMO

The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of ß (20-30 Hz) oscillations (ß bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of ß bursts. Additionally, θ-α/ß cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during ß bursts. Finally, excessive ß bursting was seen in J20 mice, including increased ß bursting during novelty and familiarity, yet a loss of coupling between ß bursts and spiking activity. These findings support the concept that ß bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of ß oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive ß bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of ß bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.


Assuntos
Doença de Alzheimer , Giro do Cíngulo , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Neurônios/fisiologia , Memória Espacial/fisiologia
5.
Stem Cell Reports ; 17(7): 1650-1665, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750046

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons (MNs). There are no effective treatments and patients usually die within 2-5 years of diagnosis. Emerging commonalities between familial and sporadic cases of this complex multifactorial disorder include disruption to RNA processing and cytoplasmic inclusion bodies containing TDP-43 and/or FUS protein aggregates. Both TDP-43 and FUS have been implicated in RNA processing functions, including microRNA biogenesis, transcription, and splicing. In this study, we explore the misexpression of microRNAs in an iPSC-based disease model of FUS ALS. We identify the downregulation of miR-139, an MN-enriched microRNA, in FUS and sporadic ALS MN. We discover that miR-139 downregulation leads to the activation of canonical WNT signaling and demonstrate that the WNT transcriptional mediator ß-catenin is a major driver of MN degeneration in ALS. Our results highlight the importance of homeostatic RNA networks in ALS.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios Motores/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Regulação para Cima/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228313

RESUMO

We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Encéfalo , Larva/fisiologia , Mamíferos , Convulsões
7.
Br J Pharmacol ; 178(13): 2671-2689, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768524

RESUMO

BACKGROUND AND PURPOSE: Functional brain imaging using genetically encoded Ca2+ sensors in larval zebrafish is being developed for studying seizures and epilepsy as a more ethical alternative to rodent models. Despite this, few data have been generated on pharmacological mechanisms of action other than GABAA antagonism. Assessing larval responsiveness across multiple mechanisms is vital to test the translational power of this approach, as well as assessing its validity for detecting unwanted drug-induced seizures and testing antiepileptic drug efficacy. EXPERIMENTAL APPROACH: Using light-sheet imaging, we systematically analysed the responsiveness of 4 days post fertilisation (dpf; which are not considered protected under European animal experiment legislation) transgenic larval zebrafish to treatment with 57 compounds spanning more than 12 drug classes with a link to seizure generation in mammals, alongside eight compounds with no such link. KEY RESULTS: We show 4dpf zebrafish are responsive to a wide range of mechanisms implicated in seizure generation, with cerebellar circuitry activated regardless of the initiating pharmacology. Analysis of functional connectivity revealed compounds targeting cholinergic and monoaminergic reuptake, in particular, showed phenotypic consistency broadly mapping onto what is known about neurotransmitter-specific circuitry in the larval zebrafish brain. Many seizure-associated compounds also exhibited altered whole brain functional connectivity compared with controls. CONCLUSIONS AND IMPLICATIONS: This work represents a significant step forward in understanding the translational power of 4dpf larval zebrafish for use in neuropharmacological studies and for studying the events driving transition from small-scale pharmacological activation of local circuits, to the large network-wide abnormal synchronous activity associated with seizures.


Assuntos
Encéfalo , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Larva , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
8.
Autophagy ; 17(4): 855-871, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286126

RESUMO

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Assuntos
Autofagia , Técnicas de Cultura de Células , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mitofagia , Autofagia/efeitos dos fármacos , Autofagia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesencéfalo/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Piridinas/farmacologia , Pirimidinas/farmacologia , Fatores de Tempo
9.
Elife ; 92020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33242304

RESUMO

Dementia is associated with severe spatial memory deficits which arise from dysfunction in hippocampal and parahippocampal circuits. For spatially sensitive neurons, such as grid cells, to faithfully represent the environment these circuits require precise encoding of direction and velocity information. Here, we have probed the firing rate coding properties of neurons in medial entorhinal cortex (MEC) in a mouse model of tauopathy. We find that grid cell firing patterns are largely absent in rTg4510 mice, while head-direction tuning remains largely intact. Conversely, neural representation of running speed information was significantly disturbed, with smaller proportions of MEC cells having firing rates correlated with locomotion in rTg4510 mice. Additionally, the power of local field potential oscillations in the theta and gamma frequency bands, which in wild-type mice are tightly linked to running speed, was invariant in rTg4510 mice during locomotion. These deficits in locomotor speed encoding likely severely impact path integration systems in dementia.


Assuntos
Córtex Entorrinal/citologia , Células de Grade/fisiologia , Atividade Motora/fisiologia , Periodicidade , Tauopatias/patologia , Animais , Córtex Entorrinal/fisiologia , Camundongos
10.
Neurobiol Aging ; 88: 1-10, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065917

RESUMO

Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials. Re neurons recorded from J20 mice did not exhibit increased action potential generation in response to depolarizing current stimuli but an increased propensity to rebound burst following hyperpolarizing current stimuli. Increased rebound firing did not appear to result from alterations to T-type Ca2+ channels. Finally, in J20 mice, there was an ~8% reduction in spike width, similar to what has been reported in CA1 pyramidal neurons from multiple amyloidopathy mice. We conclude that alterations to the intrinsic properties of Re neurons may contribute to hippocampal-thalmo-cortical hyperexcitability observed under pathological beta-amyloid load.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Núcleos da Linha Média do Tálamo/fisiopatologia , Potenciais de Ação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Canais de Cálcio/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Tálamo/fisiopatologia
11.
Cell Rep ; 30(6): 2040-2054.e5, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049030

RESUMO

Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of ß-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos adversos , Proteínas tau/efeitos adversos , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos
12.
Sci Rep ; 9(1): 14837, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619689

RESUMO

Alzheimer's disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid ß (Aß) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aß plaques develop over time and how they progressively affect local synapse density and turnover. Here we observed, in a mouse model of AD, that Aß plaques grow faster in the earlier stages of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque proximity does not appear to have an impact on synaptic dynamics. These observations indicate an imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside targeting the underlying pathology, need to address changes in synapse dynamics.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/patologia , Densidade Pós-Sináptica/patologia , Terminações Pré-Sinápticas/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação
13.
N Biotechnol ; 52: 84-93, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31125689

RESUMO

In high-rate activated sludge (HRAS) systems, extracellular adsorption and intracellular storage have been referred to as the dominant mechanisms for capturing organic carbon from wastewater. However, the quantification of storage products under short sludge retention time (SRT) of HRAS systems has rarely been studied. Since the measurement of storage products is complex and dependent on several variables, alternative solutions for substrate removal through storage are required to understand the high-rate system's carbon capture efficiency. To overcome the complexity of storage quantification experimentally, this study proposes a fundamental approach of determining the intracellular storage products from soluble organic carbon removal of domestic wastewater. A substrate partitioning approach was used which represents influent total chemical oxygen demand (COD) removal through storage, extracellular polymeric substance, biomass growth and energy production. The substrate partitioning approach based on stoichiometric analysis showed that storage accounted for 7-11% of influent soluble COD removal in A-stage systems operated at SRT range of 0.3-2 d. The stoichiometric analysis also showed that soluble COD removal through storage is dependent on dissolved oxygen (DO) level and removal through storage increased from 8% to 30% (influent soluble COD) when the DO level decreased from 2 to 0.01 mg/L at SRT of 1.5 d.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Dióxido de Carbono/análise , Oxigênio/análise , Solubilidade
14.
Neurobiol Stress ; 10: 100143, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30937349

RESUMO

The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic brain region which plays a key role in stress, anxiety, and anxiety-related disorders. Human females have an increased susceptibility to anxiety-related disorders, however the physiological basis of this is not fully understood. Here we examined the effect of the oestrous cycle and sex on the electrophysiological properties of Type I and Type II cells in the anterolateral area of the BNST (BNSTALG) in unstressed animals. There was no significant effect of oestrous cycle on any of the parameters examined in either cell type. Compared to males, the female cohort had lower capacitance in Type I cells while having a higher capacitance in Type II cells. Type II cells also displayed decreased excitability in the female cohort. In order to confirm the effect of these populations on stress and anxiety, a correlation with behaviour on the elevated zero maze was carried out. We observed that increased excitability in Type II neurons correlated with a decrease in anxiety-like behaviour. These sex-specific differences in excitability may contribute to altered susceptibility to anxiety-related disorders.

15.
Neurochem Res ; 44(3): 617-626, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29484523

RESUMO

Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tauP301L. We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Perirrinal/fisiopatologia , Receptores Muscarínicos/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Depressão/fisiopatologia , Modelos Animais de Doenças , Camundongos Transgênicos , Córtex Perirrinal/metabolismo , Transmissão Sináptica/fisiologia
16.
Diabetologia ; 62(1): 187-198, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293112

RESUMO

AIMS/HYPOTHESIS: Hypoglycaemia is a major barrier to good glucose control in type 1 diabetes. Frequent hypoglycaemic episodes impair awareness of subsequent hypoglycaemic bouts. Neural changes underpinning awareness of hypoglycaemia are poorly defined and molecular mechanisms by which glial cells contribute to hypoglycaemia sensing and glucose counterregulation require further investigation. The aim of the current study was to examine whether, and by what mechanism, human primary astrocyte (HPA) function was altered by acute and recurrent low glucose (RLG). METHODS: To test whether glia, specifically astrocytes, could detect changes in glucose, we utilised HPA and U373 astrocytoma cells and exposed them to RLG in vitro. This allowed measurement, with high specificity and sensitivity, of RLG-associated changes in cellular metabolism. We examined changes in protein phosphorylation/expression using western blotting. Metabolic function was assessed using a Seahorse extracellular flux analyser. Immunofluorescent imaging was used to examine cell morphology and enzymatic assays were used to measure lactate release, glycogen content, intracellular ATP and nucleotide ratios. RESULTS: AMP-activated protein kinase (AMPK) was activated over a pathophysiologically relevant glucose concentration range. RLG produced an increased dependency on fatty acid oxidation for basal mitochondrial metabolism and exhibited hallmarks of mitochondrial stress, including increased proton leak and reduced coupling efficiency. Relative to glucose availability, lactate release increased during low glucose but this was not modified by RLG. Basal glucose uptake was not modified by RLG and glycogen levels were similar in control and RLG-treated cells. Mitochondrial adaptations to RLG were partially recovered by maintaining euglycaemic levels of glucose following RLG exposure. CONCLUSIONS/INTERPRETATION: Taken together, these data indicate that HPA mitochondria are altered following RLG, with a metabolic switch towards increased fatty acid oxidation, suggesting glial adaptations to RLG involve altered mitochondrial metabolism that could contribute to defective glucose counterregulation to hypoglycaemia in diabetes.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Glucose/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adolescente , Linhagem Celular , Células Cultivadas , Humanos , Hipoglicemia/metabolismo , Immunoblotting , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos
17.
Sci Rep ; 8(1): 15903, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30349014

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

18.
Bioresour Technol ; 268: 128-138, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077169

RESUMO

The Integrated Fixed-Film Activated Sludge (IFAS) process is an advanced biological wastewater treatment process that integrates biofilm carriers within conventional activated sludge to uncouple the sludge retention time for nitrifiers and heterotrophic bacteria. In this study, we incorporated microalgae into the IFAS configuration for photo-oxygenation and evaluated the symbiotic reaction between microalgae and bacteria for both suspended solids and IFAS biofilm media. In a sequencing batch mode, the microalgae-IFAS system removed more than 99% ammonia and 51% phosphorous without the need for mechanical aeration. Biofilm microprofiles revealed localized photo-oxygenation by the algal biofilm and nitrification by nitrifiers on the IFAS media. Genetic sequencing showed that the addition of microalgae to the IFAS system promoted significant changes in the bacterial community structure and altered metabolic activity of several bacterial groups. Overall, this research represents a novel strategy for reducing energy consumption while meeting stringent effluent standards using a hybrid symbiotic microalgae-IFAS technology.


Assuntos
Biofilmes , Microalgas , Esgotos , Amônia , Reatores Biológicos , Nitrificação , Nitrogênio , Águas Residuárias
19.
Aging Cell ; 17(4): e12795, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29943484

RESUMO

Despite pain prevalence altering with age, the effects of aging on the properties of nociceptors are not well understood. Nociceptors, whose somas are located in dorsal root ganglia, are frequently divided into two groups based on their ability to bind isolectin B4 (IB4). Here, using cultured neurons from 1-, 3-, 5-, 8-, 12-, and 18-month-old mice, we investigate age-dependent changes in IB4-positive and IB4-negative neurons. Current-clamp experiments at physiological temperature revealed nonlinear changes in firing frequency of IB4-positive, but not IB4-negative neurons, with a peak at 8 months. This was likely due to the presence of proexcitatory conductances activated at depolarized membrane potentials and significantly higher input resistances found in IB4-positive neurons from 8-month-old mice. Repetitive firing in nociceptors is driven primarily by the TTX-resistant sodium current, and indeed, IB4-positive neurons from 8-month-old mice were found to receive larger contributions from the TTX-resistant window current around the resting membrane potential. To further address the mechanisms behind these differences, we performed RNA-seq experiments on IB4-positive and IB4-negative neurons from 1-, 8-, and 18-month-old mice. We found a larger number of genes significantly affected by age within the IB4-positive than IB4-negative neurons from 8-month-old mice, including known determinants of nociceptor excitability. The above pronounced age-dependent changes at the cellular and molecular levels in IB4-positive neurons point to potential mechanisms behind the reported increase in pain sensitivity in middle-aged rodents and humans, and highlight the possibility of targeting a particular group of neurons in the development of age-tailored pain treatments.


Assuntos
Senescência Celular/genética , Glicoproteínas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nociceptores/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/genética , Glicoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Debilidade Muscular/genética , Nociceptores/citologia
20.
Pflugers Arch ; 470(9): 1359-1376, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29797067

RESUMO

Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA