Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 16769, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425283

RESUMO

Malaria control programs implementing Long-Lasting Insecticidal Nets (LLINs) are encouraged to conduct field monitoring of nets' survival, fabric integrity and insecticidal bio-efficacy. The reference method for testing the insecticide activity of LLINs needs 100 two-to-five-day-old female mosquitoes per net, which is highly resource-intensive. We aimed at identifying an alternative protocol, using fewer mosquitos, while ensuring a precision in the main indicator of ±5 percentage points (pp). We compared different laboratory methods against the probability of the LLIN to fail the test as determined by a hierarchical Bayesian model. When using 50 mosquitoes per LLIN and considering mortality only instead of mortality or knock-down as validity criteria, the average error in the measure of the proportion of nets considered as valid was 0.40 pp. The 95% confidence interval of this value never exceed 5 pp when the number of LLIN tested was ≥40. This method slightly outperforms the current recommendations. As a conclusion, testing the bio-efficacy of LLINs with half as many mosquitoes provides a valid evaluation of the proportion of valid LLINs. This approach could increase entomology labs' testing capacity and decrease costs, with no impact in the decision process for public health purposes.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Teorema de Bayes , Bioensaio , Intervalos de Confiança
2.
Parasit Vectors ; 10(1): 564, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132421

RESUMO

BACKGROUND: Long-lasting insecticidal mosquito nets (LLINs) are highly effective for malaria prevention. However, it is also clear that durability monitoring is essential to predict when, post-distribution, a net population, no longer meets minimum WHO standards and needs to be replaced. Following a national distribution campaign in 2013, we tracked two durability indicators, physical integrity and bio-efficacy at six and 12 months post-distribution. While the loss of net integrity during this period was in line with expectations for a one-year net life, bio-efficacy results suggested that nets were losing insecticidal effect faster than expected. The rate of bio-efficacy loss varied significantly between different net brands. METHODS: We tested 600 randomly selected LLINs, 200 from each of three net brands. Each brand came from different eco-epidemiological zones reflecting the original distribution scheme. Fabric integrity (size and number of holes) was quantified using the proportional hole index (pHI). A subsample of the nets, 134 new nets, 150 at six months and 124 at 12 months, were then tested for bio-efficacy using the World Health Organization (WHO) recommended method. RESULTS: Three net types, Netprotect®, Royalsentry® and Yorkool®, were followed. After six months, 54%, 39% and 45%, respectively, showed visible loss of integrity. The median pHI by type was estimated to be one, zero and one respectively. The percentage of damaged nets increased after 12 months such that 83.5%, 74% and 68.5%, had holes. The median pHI for each brand of nets was 47.5, 47 and 23. No significant difference in the estimated pHI at either six or 12 months was observed. There was a statistically significant difference in the proportion of hole size category between the three brands (χ 2 = 15.761, df = 4, P = 0.003). In cone bio-assays, mortality of new Yorkool® nets was surprisingly low (48.6%), mortality was 90.2% and 91.3% for Netprotect® and Royalsentry® (F (2, 131) = 81.59, P < 0.0001), respectively. At 12 month use, all tested nets were below the WHO threshold for replacement. CONCLUSION: These findings suggest that there is a need for better net quality control before distribution. More frequent replacement of LLINs is probably not an option programmatically. Regardless of prior approval, LLIN durability monitoring for quality assessment as well as net loss following distribution is necessary to improve malaria control efforts.


Assuntos
Mosquiteiros Tratados com Inseticida/normas , Malária/prevenção & controle , Humanos , Inseticidas , Madagáscar/epidemiologia , Malária/epidemiologia , Controle de Mosquitos/métodos , Controle de Qualidade , Têxteis , Fatores de Tempo , Organização Mundial da Saúde
3.
J Med Entomol ; 54(4): 1031-1036, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399303

RESUMO

To control malaria in Madagascar, two primary vector control interventions are being scaled up: insecticide-treated nets and indoor residual spraying of bendiocarb, which was implemented in the Malagasy Central Highlands in 2009. The current efficacy of bendiocarb against Anopheles species was evaluated in a small-scale field trial. An experimental hut trial comparing the effectiveness of bendiocarb sprayed on five substrates (cement, wood, tin, mud, and vegetative materials) was carried out against Anopheles species in two study sites located in the eastern foothills of Madagascar. No significant difference was detected in either exophily or blood-feeding rates between treated and untreated huts. The mortality rate was significantly greater in treated huts compared to untreated huts. Efficacy up to 80% was found for 5 mo posttreatment. Although effective, bendiocarb has been used for 7 yr, and therefore an alternative insecticide may be needed to avoid the emergence of resistance.


Assuntos
Anopheles , Inseticidas , Controle de Mosquitos , Resíduos de Praguicidas , Fenilcarbamatos , Animais , Comportamento Alimentar/efeitos dos fármacos , Habitação , Madagáscar
4.
Malar J ; 15: 338, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27364163

RESUMO

BACKGROUND: Madagascar is a malaria-endemic country with an increase in cases in recent years. In vector control using insecticide, a susceptible strain is necessary to evaluate insecticide efficacy, either for spraying or on nets. The susceptibility of Anopheles arabiensis from Antananarivo, Madagascar to two organophosphate, three pyrethroid, two carbamate, and one organochlorine insecticides was investigated. Since 2010, An. arabiensis strain has been maintained away from insecticide source during 110 generations with optimal insectarium conditions. METHODS: Bioassay were performed on adult mosquitoes to assess the susceptibility of An. arabiensis to insecticide-impregnated papers (malathion 5 %, fenitrothion 1 %, deltamethrin 0.05 %, permethrin 0.75 %, alphacypermethrin 0.05 %, bendiocarb 0.1 %, propoxur 0.01 %, and DDT 4 %) following World Health Organization Pesticide Evaluation Scheme guidelines. Bioassay using Center for Disease Control bottle tests were also used to detect mortality. Molecular assay were carried out to detect the presence of knock down resistance (kdr) mutation using PCR techniques. RESULTS: Anopheles arabiensis is fully susceptible with 100 % mortality to malathion, fenitrothion, deltamethrin, permethrin, alphacypermethrin, bendiocarb, propoxur, and DDT. No kdr gene was detected using PCR method. CONCLUSION: The strain An. arabiensis maintained in the insectarium of Institut Pasteur de Madagascar is a fully susceptible strain and can be used for insecticide evaluation.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Animais , Bioensaio , Feminino , Madagáscar
5.
Malar J ; 15(1): 293, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230626

RESUMO

BACKGROUND: Indoor residual spraying with insecticide is recommended for malaria control in high-transmission settings. Determination of residual activity of insecticides is essential for the selection of appropriate indoor spraying policy. The present study was undertaken to evaluate the residual effect of bendiocarb, a carbamate insecticide used in Madagascar, on different indoor surfaces in order to elaborate future vector control interventions. METHODS: The residual activity of bendiocarb was evaluated in both experimental huts and houses. Tests in experimental huts on different substrates represented a small scale-field trials. The houses IRS performed in parallel of experimental huts IRS, was done to compare semi-field results and field results. Bioassays according to the World Health Organization (WHO) standard protocol were carried out on different substrates impregnated with bendiocarb using susceptible strains of Anopheles arabiensis and Aedes albopictus. RESULTS: Bendiocarb induced significantly high mortality in treated huts against exposed mosquito (p < 0.005) compared to untreated huts. The mortality is up to the WHO threshold of 80 % during 5 months post-treatment. Using a multivariate analysis, Ae. albopictus mortality decreased significantly from the 3rd month post-treatment. However, An. arabiensis mortality decreased significantly from the 4th month after treatment. Comparing mosquito mortality results from the mud experimental huts and the mud houses showed no significant difference regarding the persistence of bendiocarb on wall. CONCLUSIONS: Current data suggest variable persistence of bendiocarb according to the type of wall surfaces, highlighting the importance of testing insecticide for IRS in local context before using them in large scale. Data from this study validate also the importance of using experimental huts as representative tool to evaluate the effectiveness of an insecticide.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Fenilcarbamatos/administração & dosagem , Aedes/fisiologia , Animais , Anopheles/fisiologia , Bioensaio , Feminino , Habitação , Madagáscar , Análise de Sobrevida
6.
Malar J ; 14: 332, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26310788

RESUMO

BACKGROUND: Resistance of malaria vectors to pyrethroids threatens the effectiveness of long-lasting insecticidal nets (LLINs) as a tool for malaria control. Recent experimental hut and observational studies in Benin show that pyrethroid resistance reduces the insecticidal effect and personal protection of LLINs especially when they become torn. The World Health Organization has proposed a threshold for when nets are "too torn" at 1,000 cm(2) for rectangular holes and 790 cm(2) for round holes. This study examines whether there is a threshold above which LLINs no longer reduce malaria transmission. METHODS: Intact and artificially-holed LLINs under three months old and untreated nets were tested by releasing mosquitoes from a susceptible Anopheles gambiae colony, a pyrethroid-resistant An. gambiae population and a resistant Culex quinquefasciatus population in closed experimental huts in Southern Benin, West Africa. The efficacy of LLINs and untreated nets was evaluated in terms of protection against blood feeding, insecticidal effect and potential effect on malaria transmission. RESULTS: Personal protection by both LLINs and untreated nets decreased exponentially with increasing holed surface area, without evidence for a specific threshold beyond which LLINs could be considered as ineffective. The insecticidal effect of LLINs was lower in resistant mosquitoes than in susceptible mosquitoes, but holed surface area had little or no impact on the insecticidal effect of LLINs. LLINs with 22,500 cm(2) holed surface area and target insecticide content provided a personal protection of 0.60 (95 % CI 0.44-0.73) and a low insecticidal effect of 0.20 (95 % CI 0.12-0.30) against resistant An. gambiae. Nevertheless, mathematical models suggested that if 80 % of the population uses such nets, they could still prevent 94 % (95 % CI 89-97 %) of transmission by pyrethroid-resistant An. gambiae. CONCLUSIONS: Even though personal protection by LLINs against feeding mosquitoes is strongly reduced by holes, the insecticidal effect of LLINs is independent of the holed surface area, but strongly dependent on insecticide resistance. Badly torn nets that still contain insecticide have potential to reduce malaria transmission. The relationship between LLIN integrity and efficacy needs to be understood in order to guide LLIN distribution policy.


Assuntos
Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Piretrinas/farmacologia , Animais , Comportamento Animal , Benin , Bioensaio , Feminino , Humanos , Malária/prevenção & controle , Masculino , Controle de Mosquitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA