Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioinspir Biomim ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917819

RESUMO

Bamboo has a functionally-graded microstructure that endows it with a combination of desirable properties, such as high failure strain, high toughness, and a low density. As a result, bamboo has been widely used in load-bearing structures. In this work, we study the use of bamboo-inspired void patterns to geometrically improve the failure properties of structures made from brittle polymers. We perform finite element analysis and experiments on 3D-printed structures to quantify the effect of the shape and spatial distribution of voids on the fracture behavior. The introduction of periodic, uniformly distributed voids in notched bend specimens leads to a 15-fold increase in the fracture energy relative to solid specimens. Adding a gradient to the pattern of voids leads to a cumulative 55-fold improvement in the fracture energy. Mechanistically, the individual voids result in crack blunting, which suppresses crack initiation, while neighboring voids redistribute stresses throughout the sample to enable large deformation before failure. In addition, we conduct qualitative, low-energy impact experiments on PMMA plates with laser-cut void patterns, illustrating the broader potential for this strategy to improve damage tolerance and energy absorption in a wide range of materials systems.

2.
Nat Commun ; 15(1): 333, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184613

RESUMO

In recent years, mechanical metamaterials have been developed that support the propagation of an intriguing variety of nonlinear waves, including transition waves and vector solitons (solitons with coupling between multiple degrees of freedom). Here we report observations of phase transitions in 2D multistable mechanical metamaterials that are initiated by collisions of soliton-like pulses in the metamaterial. Analogous to first-order phase transitions in crystalline solids, we observe that the multistable metamaterials support phase transitions if the new phase meets or exceeds a critical nucleus size. If this criterion is met, the new phase subsequently propagates in the form of transition waves, converting the rest of the metamaterial to the new phase. More interestingly, we numerically show, using an experimentally validated model, that the critical nucleus can be formed via collisions of soliton-like pulses. Moreover, the rich direction-dependent behavior of the nonlinear pulses enables control of the location of nucleation and the spatio-temporal shape of the growing phase.

3.
Nat Commun ; 14(1): 6004, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752150

RESUMO

Mechanical metamaterials enable the creation of structural materials with unprecedented mechanical properties. However, thus far, research on mechanical metamaterials has focused on passive mechanical metamaterials and the tunability of their mechanical properties. Deep integration of multifunctionality, sensing, electrical actuation, information processing, and advancing data-driven designs are grand challenges in the mechanical metamaterials community that could lead to truly intelligent mechanical metamaterials. In this perspective, we provide an overview of mechanical metamaterials within and beyond their classical mechanical functionalities. We discuss various aspects of data-driven approaches for inverse design and optimization of multifunctional mechanical metamaterials. Our aim is to provide new roadmaps for design and discovery of next-generation active and responsive mechanical metamaterials that can interact with the surrounding environment and adapt to various conditions while inheriting all outstanding mechanical features of classical mechanical metamaterials. Next, we deliberate the emerging mechanical metamaterials with specific functionalities to design informative and scientific intelligent devices. We highlight open challenges ahead of mechanical metamaterial systems at the component and integration levels and their transition into the domain of application beyond their mechanical capabilities.

4.
Sci Adv ; 9(27): eade9247, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418520

RESUMO

Robots typically interact with their environments via feedback loops consisting of electronic sensors, microcontrollers, and actuators, which can be bulky and complex. Researchers have sought new strategies for achieving autonomous sensing and control in next-generation soft robots. We describe here an electronics-free approach for autonomous control of soft robots, whose compositional and structural features embody the sensing, control, and actuation feedback loop of their soft bodies. Specifically, we design multiple modular control units that are regulated by responsive materials such as liquid crystal elastomers. These modules enable the robot to sense and respond to different external stimuli (light, heat, and solvents), causing autonomous changes to the robot's trajectory. By combining multiple types of control modules, complex responses can be achieved, such as logical evaluations that require multiple events to occur in the environment before an action is performed. This framework for embodied control offers a new strategy toward autonomous soft robots that operate in uncertain or dynamic environments.


Assuntos
Robótica , Solventes , Elastômeros , Retroalimentação
5.
Soft Matter ; 18(38): 7341-7347, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36124868

RESUMO

In this work, we report 3D printable soft composites that are simultaneously stretchable and tough. The matrix of the composite consists of polydimethylsiloxane containing octuple hydrogen bonding sites, resulting in a material significantly tougher than conventional polydimethylsiloxane. Short glass fibers are also added to the material. Prior to solvent evaporation, the material possesses a viscoelastic yield stress making it suitable for printing via direct ink writing. We mechanically characterize the printed composite, including fracture tests. We observe robust crack deflection and delay of catastrophic failure, leading to measured toughness values up to 2 00 000 J m-2 for specimens with 5 vol% glass fibers. The printed composites exhibit an unprecedented combination of stiffness, stretchability, and toughness.

6.
Proc Natl Acad Sci U S A ; 119(28): e2123497119, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787051

RESUMO

Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.

7.
Soft Robot ; 9(5): 938-947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35446136

RESUMO

The leaf-like origami structure is inspired by geometric patterns found in nature, exhibiting unique transitions between open and closed shapes. With a bistable energy landscape, leaf-like origami is able to replicate the autonomous grasping of objects observed in biological systems such as the Venus flytrap. We show uniform grasping motions of the leaf-like origami, as well as various nonuniform grasping motions that arise from its multitransformable nature. Grasping motions can be triggered with high tunability due to the structure's bistable energy landscape. We demonstrate the self-adaptive grasping motion by dropping a target object onto our paper prototype, which does not require an external power source to retain the capture of the object. We also explore the nonuniform grasping motions of the leaf-like structure by selectively controlling the creases, which reveals various unique grasping configurations that can be exploited for versatile, autonomous, and self-adaptive robotic operations.


Assuntos
Droseraceae , Força da Mão , Movimento (Física)
8.
J Mech Phys Solids ; 1582022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35418713

RESUMO

A crack terminating at an arbitrary angle to the interface between two neo-Hookean sheets is investigated under plane stress conditions using finite deformation theory. The asymptotic crack-tip deformation and stress fields are analyzed as a function of the ratio of the moduli and the angle of the crack relative to the interface. Full-held numerical calculations and experimental studies validate the analytical results. A stretch-based crack growth criterion is developed using crack-tip held solutions. Such criterion can predict the delay of crack growth through the bi-material interface observed in experiments and can be extended to any heterogeneity and material.

9.
Phys Rev E ; 104(5-1): 054209, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942715

RESUMO

We systematically study linear and nonlinear wave propagation in a chain composed of piecewise-linear bistable springs. Such bistable systems are ideal test beds for supporting nonlinear wave dynamical features including transition and (supersonic) solitary waves. We show that bistable chains can support the propagation of subsonic wave packets which in turn can be trapped by a low-energy phase to induce energy localization. The spatial distribution of these energy foci strongly affects the propagation of linear waves, typically causing scattering, but, in special cases, leading to a reflectionless mode analogous to the Ramsauer-Townsend effect. Furthermore, we show that the propagation of nonlinear waves can spontaneously generate or remove additional foci, which act as effective "impurities." This behavior serves as a new mechanism for reversibly programming the dynamic response of bistable chains.

10.
Nature ; 598(7879): 39-48, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616053

RESUMO

Mechanical mechanisms have been used to process information for millennia, with famous examples ranging from the Antikythera mechanism of the Ancient Greeks to the analytical machines of Charles Babbage. More recently, electronic forms of computation and information processing have overtaken these mechanical forms, owing to better potential for miniaturization and integration. However, several unconventional computing approaches have recently been introduced, which blend ideas of information processing, materials science and robotics. This has raised the possibility of new mechanical computing systems that augment traditional electronic computing by interacting with and adapting to their environment. Here we discuss the use of mechanical mechanisms, and associated nonlinearities, as a means of processing information, with a view towards a framework in which adaptable materials and structures act as a distributed information processing network, even enabling information processing to be viewed as a material property, alongside traditional material properties such as strength and stiffness. We focus on approaches to abstract digital logic in mechanical systems, discuss how these systems differ from traditional electronic computing, and highlight the challenges and opportunities that they present.

11.
ACS Appl Mater Interfaces ; 13(26): 31163-31170, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34164975

RESUMO

The ability for materials to adapt their shape and mechanical properties to the local environment is useful in a variety of applications, from soft robots to deployable structures. In this work, we integrate liquid crystal elastomers (LCEs) with multistable structures to allow autonomous reconfiguration in response to local changes in temperature. LCEs are incorporated in a kirigami-inspired system in which squares are connected at their vertices by small hinges composed of LCE-silicone bilayers. These bend and soften as the temperature increases above room temperature. By choosing geometric parameters for the hinges such that bifurcation points in the stability exist, a transition from mono- or tristability to bistability can be triggered by a sufficient increase in temperature, forcing rearrangements of the structure as minima in the energy landscape are removed. We demonstrate temperature-induced propagation of transition waves, enabling local structural changes to autonomously propagate and affect other parts of the structure. These effects could be harnessed in applications in interface control, reconfigurable structures, and soft robotics.

12.
ACS Appl Mater Interfaces ; 12(6): 7658-7664, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31990515

RESUMO

The wide range of textures that can be generated via wrinkling can imbue surfaces with functionalities useful for a variety of applications including tunable optics, stretchable electronics, and coatings with controlled wettability and adhesion. Conventional methods of wrinkle fabrication rely on batch processes in piece-by-piece fashion, not amenable for scale-up to enable commercialization of surface wrinkle-related technologies. In this work, a scalable manufacturing method for surface wrinkles is demonstrated on a cylindrical support using bending-induced strains. A bending strain is introduced to a thin layer of ultraviolet-curable poly(dimethylsiloxane) (UV-PDMS) coated on top of a soft PDMS substrate by wrapping the bilayer around a cylindrical roller. After curing the UV-PDMS and subsequently releasing the bending strain, one-dimensional or checkerboard surface wrinkles are produced. Based on experimental and computational analyses, we show that these patterns form as a result of the interplay between swelling and bending strains. The feasibility of continuous manufacturing of surface wrinkles is demonstrated by using a two-roller roll-to-roll prototype, which paves the way for scalable roll-to-roll processing. To demonstrate the utility of these textures, we show that surface wrinkles produced in this manner enhance the light harvesting and thus efficiency of a solar cell at oblique angles of illumination due to their strong light scattering properties.

13.
Phys Rev E ; 100(1-1): 013001, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499870

RESUMO

Advances in fabrication techniques have led to a proliferation of studies on new mechanical metamaterials, particularly on elastic and linear phenomena (for example, their phonon spectrum and acoustic band gaps). More recently, there has been a growing interest in nonlinear wave phenomena in these systems, and particularly how geometric parameters affect the propagation of high-amplitude nonlinear waves. In this paper, we analytically, numerically, and experimentally demonstrate the propagation of cnoidal waves in an elastic architected material. This class of traveling waves constitutes a general family of nonlinear waves, which reduce to phonons and solitons under suitable limits. Although cnoidal waves were first discovered as solutions to the conservation laws for shallow water, they have subsequently appeared in contexts as diverse as ion plasmas and nonlinear optics, but have rarely been explored in elastic solids. We show that geometrically nonlinear deformations in architected soft elastic solids can result in cnoidal waves. Insights from our analysis will be critical to controlling the propagation of stress waves in advanced materials.

14.
Phys Rev Lett ; 123(2): 024101, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386527

RESUMO

Soft mechanical metamaterials can support a rich set of dynamic responses, which, to date, have received relatively little attention. Here, we report experimental, numerical, and analytical results describing the behavior of an anisotropic two-dimensional flexible mechanical metamaterial when subjected to impact loading. We not only observe the propagation of elastic vector solitons with three components-two translational and one rotational-that are coupled together, but also very rich direction-dependent behaviors such as the formation of sound bullets and the separation of pulses into different solitary modes.

15.
Nat Commun ; 10(1): 128, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631058

RESUMO

Many plants autonomously change morphology and function in response to environmental stimuli or sequences of stimuli. In contrast with the electronically-integrated sensors, actuators, and microprocessors in traditional mechatronic systems, natural systems embody these sensing, actuation, and control functions within their compositional and structural features. Inspired by nature, we embody logic in autonomous systems to enable them to respond to multiple stimuli. Using 3D printable fibrous composites, we fabricate structures with geometries near bifurcation points associated with a transition between bistability and monostability. When suitable stimuli are present, the materials swell anisotropically. This forces a key geometric parameter to pass through a bifurcation, triggering rapid and large-amplitude self-actuation. The actuation time can be programmed by varying structural parameters (from 0.6 to 108 s for millimeter-scale structures). We demonstrate this bioinspired control strategy with examples that respond to their environment according to their embodied logic, without electronics, external control, or tethering.


Assuntos
Dimetilpolisiloxanos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Solventes/química , Água/química , Anisotropia , Materiais Biomiméticos/química , Lógica
16.
Adv Sci (Weinh) ; 5(11): 1800728, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479922

RESUMO

To be of engineering relevance, it is essential for stiff and strong materials to possess also high toughness. However, as these properties are typically mutually exclusive, they are rarely found in nature and synthetic replications are extremely limited. Here, an elegant albeit simple physical principle that enables ligaments in cellular networks to possess these mechanical properties simultaneously is presented. The underlying architecture consists of multiple, coaxially aligned layers separated by interfaces that prevent crack propagation, hence increasing the energy required for complete rupture. The results show that the fracture strain and toughness can be increased by over 100%, when compared to conventional reference struts, while fully maintaining the density, stiffness, and strength. The bioinspired and highly versatile approach is scale-independent under the absence of shear, applicable to various geometries, and complementary to existing approaches. It can, therefore, significantly improve safety and reduce cost and environmental impact in numerous applications, such as packaging, sports equipment, and transportation.

17.
Adv Mater ; 30(12): e1705001, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29359825

RESUMO

The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness.

18.
Proc Natl Acad Sci U S A ; 115(6): 1198-1203, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29348206

RESUMO

Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance.

19.
Adv Mater ; 29(40)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28875572

RESUMO

Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices.

20.
Bioinspir Biomim ; 12(2): 026014, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28192278

RESUMO

Additive manufacturing technologies offer new ways to fabricate cellular materials with composite cell walls, mimicking the structure and mechanical properties of woods. However, materials limitations and a lack of design tools have confined the usefulness of 3D printed cellular materials. We develop new carbon fiber reinforced, epoxy inks for 3D printing which result in printed materials with longitudinal Young's modulus up to 57 GPa (exceeding the longitudinal modulus of wood cell wall material). To guide the design of hierarchical cellular materials, we developed a parameterized, multi-scale, finite element model. Computational homogenization based on finite element simulations at multiple length scales is employed to obtain the elastic properties of the material at multiple length scales. Parameters affecting the elastic response of cellular composites, such as the volume fraction, orientation distribution, and aspect ratio of fibers within the cell walls as well as the cell geometry and relative density are included in the model. To validate the model, experiments are conducted on both solid carbon fiber/epoxy composites and cellular structures made from them, showing excellent agreement with computational multi-scale model predictions, both at the cell-wall and at the cellular-structure levels. Using the model, cellular structures are designed and experimentally shown to achieve a specific stiffness nearly as high as that observed in balsa wood. The good agreement between the multi-scale model predictions and experimental data provides confidence in the practical utility of this model as a tool for designing novel 3D cellular composites with unprecedented specific elastic properties.


Assuntos
Materiais Biomiméticos , Bombacaceae/anatomia & histologia , Bombacaceae/fisiologia , Parede Celular , Compostos de Epóxi , Tinta , Impressão Tridimensional , Carbono , Módulo de Elasticidade , Elasticidade , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA