Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0269509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584000

RESUMO

Opioid overdoses within the United States continue to rise and have been negatively impacting the social and economic status of the country. In order to effectively allocate resources and identify policy solutions to reduce the number of overdoses, it is important to understand the geographical differences in opioid overdose rates and their causes. In this study, we utilized data on emergency department opioid overdose (EDOOD) visits to explore the county-level spatio-temporal distribution of opioid overdose rates within the state of Virginia and their association with aggregate socio-ecological factors. The analyses were performed using a combination of techniques including Moran's I and multilevel modeling. Using data from 2016-2021, we found that Virginia counties had notable differences in their EDOOD visit rates with significant neighborhood-level associations: many counties in the southwestern region were consistently identified as the hotspots (areas with a higher concentration of EDOOD visits) whereas many counties in the northern region were consistently identified as the coldspots (areas with a lower concentration of EDOOD visits). In most Virginia counties, EDOOD visit rates declined from 2017 to 2018. In more recent years (since 2019), the visit rates showed an increasing trend. The multilevel modeling revealed that the change in clinical care factors (i.e., access to care and quality of care) and socio-economic factors (i.e., levels of education, employment, income, family and social support, and community safety) were significantly associated with the change in the EDOOD visit rates. The findings from this study have the potential to assist policymakers in proper resource planning thereby improving health outcomes.


Assuntos
Overdose de Drogas , Overdose de Opiáceos , Humanos , Estados Unidos , Analgésicos Opioides , Serviço Hospitalar de Emergência , Overdose de Drogas/epidemiologia , Virginia/epidemiologia
2.
IEEE Trans Biomed Eng ; 63(8): 1687-98, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26560865

RESUMO

Surface electromyography (sEMG) has been the predominant method for sensing electrical activity for a number of applications involving muscle-computer interfaces, including myoelectric control of prostheses and rehabilitation robots. Ultrasound imaging for sensing mechanical deformation of functional muscle compartments can overcome several limitations of sEMG, including the inability to differentiate between deep contiguous muscle compartments, low signal-to-noise ratio, and lack of a robust graded signal. The objective of this study was to evaluate the feasibility of real-time graded control using a computationally efficient method to differentiate between complex hand motions based on ultrasound imaging of forearm muscles. Dynamic ultrasound images of the forearm muscles were obtained from six able-bodied volunteers and analyzed to map muscle activity based on the deformation of the contracting muscles during different hand motions. Each participant performed 15 different hand motions, including digit flexion, different grips (i.e., power grasp and pinch grip), and grips in combination with wrist pronation. During the training phase, we generated a database of activity patterns corresponding to different hand motions for each participant. During the testing phase, novel activity patterns were classified using a nearest neighbor classification algorithm based on that database. The average classification accuracy was 91%. Real-time image-based control of a virtual hand showed an average classification accuracy of 92%. Our results demonstrate the feasibility of using ultrasound imaging as a robust muscle-computer interface. Potential clinical applications include control of multiarticulated prosthetic hands, stroke rehabilitation, and fundamental investigations of motor control and biomechanics.


Assuntos
Antebraço/fisiologia , Mãos/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Músculo Esquelético/fisiologia , Ultrassonografia/métodos , Algoritmos , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA