Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biochem Biophys Rep ; 37: 101588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088952

RESUMO

Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.

2.
Life (Basel) ; 13(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38137838

RESUMO

Wet age-related macular degeneration (wAMD) is a chronic inflammation-associated neurodegenerative disease affecting the posterior part of the eye in the aging population. Aging results in the reduced functionality of cells and tissues, including the cells of the retina. Initiators of a chronic inflammatory and pathologic state in wAMD may be a result of the accumulation of inevitable metabolic injuries associated with the maintenance of tissue homeostasis from a young age to over 50. Apart from this, risk factors like smoking, genetic predisposition, and failure to repair the injuries that occur, alongside attempts to rescue the hypoxic outer retina may also contribute to the pathogenesis. Aging of the immune system (immunosenescence) and a compromised outer blood retinal barrier (BRB) result in the exposure of the privileged milieu of the retina to the systemic immune system, further increasing the severity of the disease. When immune-privileged sites like the retina are under pathological stress, certain age- and disease-related conditions may necessitate assistance from cells distant from the resident ones to help restore the functionality of the tissue. As a necessary part of tissue repair, inflammation is a major response to disease and recruits immune cells to the site of damage. We suspect that the specific reparative inflammatory responses are controlled by an autoantigen-T cell-mediated mechanism, a process that may be hindered in wAMD.

3.
iScience ; 26(4): 106374, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37096047

RESUMO

Two-photon lithography (TPL) is a versatile technology for additive manufacturing of 2D and 3D micro/nanostructures with sub-wavelength resolved features. Recent advancement in laser technology has enabled the application of TPL fabricated structures in several fields such as microelectronics, photonics, optoelectronics, microfluidics, and plasmonic devices. However, the lack of two-photon polymerizable resins (TPPRs) induces bottleneck to the growth of TPL to its true potential, and hence continuous research efforts are focused on developing efficient TPPRs. In this article, we review the recent advancements in PI and TPPR formulation and the impact of process parameters on fabrication of 2D and 3D structures for specific applications. The fundamentals of TPL are described, followed by techniques used for achieving improved resolution and functional micro/nanostructures. Finally, a critical outlook and future prospects of TPPR formulation for specific applications are presented.

4.
Neurochem Res ; 48(3): 697-712, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36342577

RESUMO

To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.


Assuntos
Dieta Cetogênica , Epilepsia , Animais , Humanos , Ácidos Decanoicos/metabolismo , Ácidos Graxos/metabolismo , Mamíferos/metabolismo
5.
Methods Mol Biol ; 2595: 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441451

RESUMO

MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to the target mRNAs. Since it was discovered in 1993, miRNA is found in all eukaryotic cells conserved across the species. miRNA-size molecules are also known to be found in prokaryotes. Regulation of miRNAs is extensively studied for their role in biological processes as well as in development and progression of various human diseases including neurodegenerative diseases, cardiovascular disease, and cancer. miRNA-based therapy has a promising application, and with a good delivery system, miRNA therapeutics can potentially be a success. miRNAs and EVs have potential therapeutic and prognostic application in a range of disease models. This chapter summarizes miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs hold huge potential for diagnostic and prognostic biomarkers and as predictors of drug response.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , MicroRNAs/genética , Inativação Gênica , RNA Mensageiro , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Células Eucarióticas
6.
Methods Mol Biol ; 2595: 123-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441459

RESUMO

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the retina which ultimately results in the irreversible loss of central vision. AMD is one of the foremost causes of blindness in people over the age of 50. Although the precise pathogenesis of AMD has not yet been elucidated, AMD results from a complex interaction between genetic predisposition and environmental provoking factors. These factors might lead to ocular homeostasis dysfunction resulting in inflammation, oxidative stress, and in some cases neovascularization. MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded RNAs and are approximately 22 nucleotides long. miRNAs play a central role in several pathophysiological processes such as immune and inflammatory responses, pathological angiogenesis, and the response to oxidative stress, all of which have been suggested to be associated with AMD pathogenesis and progression. Here we discuss methods to isolate miRNAs using serum specimens from AMD patients and miRNA profiling for the better understanding of the pathogenesis and progression of AMD.


Assuntos
Degeneração Macular , MicroRNAs , Humanos , MicroRNAs/genética , Degeneração Macular/genética , Neovascularização Patológica , Retina , Predisposição Genética para Doença
7.
Methods Mol Biol ; 2595: 137-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36441460

RESUMO

Age-related macular degeneration (AMD) is a common condition causing progressive visual impairment, leading to irreversible blindness. Existing diagnostic tools for AMD are limited to clinical signs of drusen deposition in the macula and the visual assessment of the patient. The presence of circulating microRNAs (miRNAs) in the peripheral circulatory system with potential as diagnostic, prognostic, and/or predictive biomarkers has been reported in a number of conditions/diseases. miRNAs are key regulators of several biological processes, and miRNA dysregulation has been linked with numerous diseases, most remarkably cancer. miRNAs have been shown to be involved in AMD pathology, and several miRNA target genes and signalling pathways were associated with AMD pathogenesis. Exosomes are 50-90 nm membrane microvesicles (MVs), released by several cell types. Although exosomal functions are not completely understood, there is much evidence to suggest that exosomes play an essential role in cell-cell communication. They may stimulate target cells by transferring different bioactive molecules such as miRNA. Here we discuss methods to isolate exosome using serum specimens from AMD patients and miRNA profiling for the better understanding of the disease.


Assuntos
MicroRNA Circulante , Exossomos , Macula Lutea , Degeneração Macular , MicroRNAs , Humanos , MicroRNAs/genética , Degeneração Macular/genética , Exossomos/genética
8.
Pharmaceutics ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683883

RESUMO

The current treatment for the acquired retinal vasculopathies involves lifelong repeated intravitreal injections of either anti-vascular endothelial growth factor (VEGF) therapy or modulation of inflammation with steroids. Consequently, any treatment modification that decreases this treatment burden for patients and doctors alike would be a welcome intervention. To that end, this research aims to develop a topically applied nanoparticulate system encapsulating a corticosteroid for extended drug release. Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) supports the controlled release of the encapsulated drug, while surface modification of these NPs with chitosan might prolong the mucoadhesion ability leading to improved bioavailability of the drug. Triamcinolone acetonide (TA)-loaded chitosan-coated PLGA NPs were fabricated using the oil-in-water emulsion technique. The optimized surface-modified NPs obtained using Box-Behnken response surface statistical design were reproducible with a particle diameter of 334 ± 67.95 to 386 ± 15.14 nm and PDI between 0.09 and 0.15. These NPs encapsulated 55-57% of TA and displayed a controlled release of the drug reaching a plateau in 27 h. Fourier-transform infrared spectroscopic (FTIR) analysis demonstrated characteristic peaks for chitosan (C-H, CONH2 and C-O at 2935, 1631 and 1087 cm-1, respectively) in chitosan-coated PLGA NPs. This result data, coupled with positive zeta potential values (ranged between +26 and +33 mV), suggests the successful coating of chitosan onto PLGA NPs. Upon coating of the NPs, the thermal stability of the drug, polymer, surfactant and PLGA NPs have been enhanced. The characteristics of the surface-modified NPs supports their use as potential candidates for topical ocular drug delivery for acquired retinal vasculopathies.

9.
ACS Nano ; 15(9): 14193-14206, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34435496

RESUMO

The major bottleneck in fabrication of engineered 3D nanostructures is the choice of materials. Adding functionality to these nanostructures is a daunting task. In order to mitigate these issues, we report a two-photon patternable all carbon material system which can be used to fabricate fluorescent 3D micro/nanostructures using two-photon lithography, with subwavelength resolution. The synthesized material system eliminates the need to use conventional two-photon absorbing materials such as two-photon dyes or two-photon initiators. We have used two different trifunctional acrylate monomers and carbon dots, synthesized hydrothermally from a polyphenolic precursor, to formulate a two-photon processable resin. Upon two-photon excitation, photogenerated electrons in the excited states of the carbon dots facilitate the free radical formation at the surface of the carbon dots. These radicals, upon interaction with vinyl moieties, enable cross-linking of acrylate monomers. Free-radical induced two-photon polymerization of acrylate monomers without any conventional proprietary two-photon absorbing materials was accomplished at an ultrafine subwavelength resolution of 250 nm using 800 nm laser excitation. The effect of critical parameters such as average laser power, carbon dot concentration, and radiation exposure were determined for the fabrication of one-, two-, and three-dimensional functional nanostructures, applicable in a range of domains where fluorescence and toxicity are of the utmost importance. A fabrication speed as high as 100 mm/s was achieved. The ability to fabricate functional 3D micro-/nanostructures is anticipated to instigate a paradigm shift in various areas such as metamaterials, energy storage, drug delivery, and optoelectronics to name a few.

10.
Pharmaceutics ; 13(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207223

RESUMO

Dry eye disease (DED) or keratoconjunctivitis sicca is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction. Symptoms include dryness, irritation, discomfort and visual disturbance, and standard treatment includes the use of lubricants and topical steroids. Secondary inflammation plays a prominent role in the development and propagation of this debilitating condition. To address this we have investigated the pilot scale development of an innovative drug delivery system using a dexamethasone-encapsulated cholesterol-Labrafac™ lipophile nanostructured lipid carrier (NLC)-based ophthalmic formulation, which could be developed as an eye drop to treat DED and any associated acute exacerbations. After rapid screening of a range of laboratory scale pre-formulations, the chosen formulation was prepared at pilot scale with a particle size of 19.51 ± 0.5 nm, an encapsulation efficiency of 99.6 ± 0.5%, a PDI of 0.08, and an extended stability of 6 months at 4 °C. This potential ophthalmic formulation was observed to have high tolerability and internalization capacity for human corneal epithelial cells, with similar behavior demonstrated on ex vivo porcine cornea studies, suggesting suitable distribution on the ocular surface. Further, ELISA was used to study the impact of the pilot scale formulation on a range of inflammatory biomarkers. The most successful dexamethasone-loaded NLC showed a 5-fold reduction of TNF-α production over dexamethasone solution alone, with comparable results for MMP-9 and IL-6. The ease of formulation, scalability, performance and biomarker assays suggest that this NLC formulation could be a viable option for the topical treatment of DED.

11.
Transl Vis Sci Technol ; 10(2): 12, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003896

RESUMO

Purpose: We previously identified three microRNAs (miRNAs) with significantly increased expression in the serum of patients with age-related macular degeneration (AMD) compared with healthy controls. Our objective was to identify potential functional roles of these upregulated miRNAs (miR-19a, miR-126, and miR-410) in AMD, using computational tools for miRNAs prediction and identification, and to demonstrate the miRNAs target genes and signaling pathways. We also aim to demonstrate the pathologic role of isolated sera-derived exosomes from patients with AMD and controls using in vitro models. Methods: miR-19a, miR-126, and miR-410 were investigated using bioinformatic approaches, including DIANA-mirPath and miR TarBase. Data on the resulting target genes and signaling pathways were incorporated with the differentially expressed miRNAs in AMD. Apoptosis markers, human apoptosis miRNAs polymerase chain reaction arrays and angiogenesis/vasculogenesis assays were performed by adding serum-isolated AMD patient or control patient derived exosomes into an in vitro human angiogenesis model and ARPE-19 cell lines. Results: A number of pathways known to be involved in AMD development and progression were predicted, including the vascular endothelial growth factor signaling, apoptosis, and neurodegenerative pathways. The study also provides supporting evidence for the involvement of serum-isolated AMD-derived exosomes in the pathology of AMD, via apoptosis and/or angiogenesis. Conclusions: miR-19a, miR-126, miR-410 and their target genes had a significant correlation with AMD pathogenesis. As such, they could be potential new targets as predictive biomarkers or therapies for patients with AMD. Translational Relevance: The functional analysis and the pathologic role of altered miRNA expression in AMD may be applicable in developing new therapies for AMD through the disruption of individual or multiple pathophysiologic pathways.


Assuntos
Exossomos , Degeneração Macular , MicroRNAs , Biologia Computacional , Exossomos/genética , Humanos , Degeneração Macular/genética , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular
12.
Biomed Opt Express ; 11(7): 3407-3422, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014541

RESUMO

Optical coherence tomography (OCT) is a non-invasive depth resolved optical imaging modality, that enables high resolution, cross-sectional imaging in biological tissues and materials at clinically relevant depths. Though OCT offers high resolution imaging, the best ultra-high-resolution OCT systems are limited to imaging structural changes with a resolution of one micron on a single B-scan within very limited depth. Nanosensitive OCT (nsOCT) is a recently developed technique that is capable of providing enhanced sensitivity of OCT to structural changes. Improving the sensitivity of OCT to detect structural changes at the nanoscale level, to a depth typical for conventional OCT, could potentially improve the diagnostic capability of OCT in medical applications. In this paper, we demonstrate the capability of nsOCT to detect structural changes deep in the rat cornea following superficial corneal injury.

13.
Transl Vis Sci Technol ; 9(4): 28, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818115

RESUMO

Purpose: To identify circulating microRNAs (miRNA) associated with age-related macular degeneration (AMD). Thus differentially expressed serum miRNA could be used as AMD biomarkers. Methods: This study involved total RNA isolation from sera from patients with atrophic AMD (n = 10), neovascular AMD (n = 10), and age- and sex-matched controls (n = 10). A total of 377 miRNAs were coanalyzed using array technologies, and differentially regulated miRNAs were determined. Extensive validation studies (n = 90) of serum from AMD patients and controls confirmed initial results. Total RNA isolation was carried out from sera from patients with atrophic AMD (n = 30), neovascular AMD (n = 30), and controls (n = 30). Fourteen miRNAs from the discovery dataset were coanalyzed using quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Results: Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully identified and validated the differentially regulated miRNAs in serum from AMD patients versus controls. The biomarker potential of three miRNAs (miR-126, miR-19a, and miR-410) was confirmed by qRT-PCR, with significantly increased quantities in serum of AMD patients compared with healthy controls. Conclusions: Increased quantities of miR-126, miR-410, and miR-19a in serum from AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers. All three miRNAs significantly correlated with AMD pathogenesis. Translational Relevance: The discovery of new AMD miRNA may act as biomarkers in evaluating AMD diagnosis and prognosis.


Assuntos
MicroRNAs , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/diagnóstico
14.
BMC Cancer ; 18(1): 965, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305055

RESUMO

BACKGROUND: Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells. METHODS: We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer. RESULTS: In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells. CONCLUSIONS: Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Lapatinib/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteína Forkhead Box O3/biossíntese , Expressão Gênica/efeitos dos fármacos , Genes erbB-2 , Humanos , Lapatinib/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico
15.
Methods Mol Biol ; 1509: 1-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826912

RESUMO

MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to target mRNAs. Since it was discovered in 1993, miRNA are found in all eukaryotic cells conserved across the species. In recent years, regulation of miRNAs are extensively studied for their role in biological processes as well as in development and progression of various human diseases including retinal disorder, neurodegenerative diseases, cardiovascular disease and cancer. This chapter summarises miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs holds huge potential for diagnostic and prognostic biomarkers, and as predictors of drug response.


Assuntos
MicroRNAs/biossíntese , Interferência de RNA , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo
16.
Methods Mol Biol ; 1509: 93-113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27826921

RESUMO

Age-related macular degeneration (AMD) is a common condition causing progressive visual impairment, leading to irreversible blindness. Existing diagnostic tools for AMD are limited to clinical signs in the macula and the visual assessment of the patient. The presence of circulating microRNAs (miRNAs) in the peripheral circulatory system with potential as diagnostic, prognostic and/or predictive biomarkers has been reported in a number of conditions/diseases. miRNAs are key regulators of several biological processes, and miRNA dysregulation has been linked with numerous diseases, most remarkably cancer. miRNAs have been shown to be involved in AMD pathology and several miRNAs target genes and signaling pathways were identified in relation to AMD pathogenesis. Exosomes are 50-90 nm membrane micro-vesicles (MVs), released by several cell types. Although exosomal functions are not completely understood, there is much evidence to suggest that exosomes play an essential role in cell-cell communication. They may stimulate target cells by transferring different bioactive molecules such as miRNA. Here we discuss methods to isolate exosome using serum specimens from AMD patients and miRNA profiling for the better understanding of the disease.


Assuntos
Exossomos/metabolismo , Perfilação da Expressão Gênica , Degeneração Macular/sangue , MicroRNAs/sangue , Biomarcadores/sangue , Linhagem Celular , Exossomos/genética , Humanos , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Neovascularização Fisiológica , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo
17.
Oncotarget ; 7(37): 60752-60774, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27542276

RESUMO

The tumour microenvironment (TME) is an important factor in determining the growth and metastasis of colorectal cancer, and can aid tumours by both establishing an immunosuppressive milieu, allowing the tumour avoid immune clearance, and by hampering the efficacy of various therapeutic regimens. The tumour microenvironment is composed of many cell types including tumour, stromal, endothelial and immune cell populations. It is widely accepted that cells present in the TME acquire distinct functional phenotypes that promote tumorigenesis. One such cell type is the mesenchymal stromal cell (MSC). Evidence suggests that MSCs exert effects in the colorectal tumour microenvironment including the promotion of angiogenesis, invasion and metastasis. MSCs immunomodulatory capacity may represent another largely unexplored central feature of MSCs tumour promoting capacity. There is considerable evidence to suggest that MSCs and their secreted factors can influence the innate and adaptive immune responses. MSC-immune cell interactions can skew the proliferation and functional activity of T-cells, dendritic cells, natural killer cells and macrophages, which could favour tumour growth and enable tumours to evade immune cell clearance. A better understanding of the interactions between the malignant cancer cell and stromal components of the TME is key to the development of more specific and efficacious therapies for colorectal cancer. Here, we review and explore MSC- mediated mechanisms of suppressing anti-tumour immune responses in the colon tumour microenvironment. Elucidation of the precise mechanism of immunomodulation exerted by tumour-educated MSCs is critical to inhibiting immunosuppression and immune evasion established by the TME, thus providing an opportunity for targeted and efficacious immunotherapy for colorectal cancer growth and metastasis.


Assuntos
Colo/imunologia , Neoplasias Colorretais/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Imunidade , Terapia de Imunossupressão , Evasão Tumoral , Microambiente Tumoral
18.
J Diabetes Res ; 2016: 6143129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26770988

RESUMO

The prevalence of cardiac diabetic diseases has been increased around the world, being the most common cause of death and disability among diabetic patients. In particular, diabetic cardiomyopathy is characterized with a diastolic dysfunction and cardiac remodelling without signs of hypertension and coronary artery diseases. In an early stage, it is an asymptomatic disease; however, clinical studies demonstrate that diabetic myocardia are more vulnerable to injury derived by acute myocardial infarct and are the worst prognosis for rehabilitation. Currently, biochemical and imaging diagnostic methods are unable to detect subclinical manifestation of the disease (prior to diastolic dysfunction). In this review, we elaborately discuss the current scientific evidences to propose circulating microRNAs as promising biomarkers for early detection of diabetic cardiomyopathy and, then, to identify patients at high risk of diabetic cardiomyopathy development. Moreover, here we summarise the research strategies to identify miRNAs as potential biomarkers, present limitations, challenges, and future perspectives.


Assuntos
Cardiomiopatias Diabéticas/diagnóstico , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Diagnóstico Precoce , Humanos , MicroRNAs/genética
19.
Adv Mater ; 28(27): 5542-52, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26678528

RESUMO

Wound healing is a complex process and often delayed in patients with underlying chronic conditions. The cost of wound care is a significant burden to the society, warranting new techniques to prompt wound healing. Several studies have reported on the beneficial effects of mesenchymal stem cells (MSCs) function in recruiting host cells, releasing secretory factors and matrix proteins thereby increasing wound heal. These secrete bioactive trophic factors from MSCs also includes extracellular vesicles (EVs) or exosomes. Recent studies have shown that EVs are one of the key secretory products of MSCs mediating cell-to-cell communication to enhance wound healing. Current knowledge related to the potential use of EVs in wound healing is reviewed and the promising future for EVs - a naturally secreted nanoparticle - as an alternative to cell-based therapy is discussed.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Células-Tronco Mesenquimais , Nanopartículas , Cicatrização
20.
Oncotarget ; 6(32): 32774-89, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26416415

RESUMO

Exosomes (EVs) have relevance in cell-to-cell communication carrying pro-tumorigenic factors that participate in oncogenesis and drug resistance and are proposed to have potential as self-delivery systems. Advancing on our studies of EVs in triple-negative breast cancer, here we more comprehensively analysed isogenic cell line variants and their EV populations, tissues cell line variants and their EV populations, as well as breast tumour and normal tissues. Profiling 384 miRNAs showed EV miRNA content to be highly representative of their cells of origin. miRNAs most substantially down-regulated in aggressive cells and their EVs originated from 14q32. Analysis of miR-134, the most substantially down-regulated miRNA, supported its clinical relevance in breast tumours compared to matched normal breast tissue. Functional studies indicated that miR-134 controls STAT5B which, in turn, controls Hsp90. miR-134 delivered by direct transfection into Hs578Ts(i)8 cells (in which it was greatly down-regulated) reduced STAT5B, Hsp90, and Bcl-2 levels, reduced cellular proliferation, and enhanced cisplatin-induced apoptosis. Delivery via miR-134-enriched EVs also reduced STAT5B and Hsp90, reduced cellular migration and invasion, and enhanced sensitivity to anti-Hsp90 drugs. While the differing effects achieved by transfection or EV delivery are likely to be, at least partly, due to specific amounts of miR-134 delivered by these routes, these EV-based studies identified miRNA-134 as a potential biomarker and therapeutic for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Exossomos/metabolismo , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA