RESUMO
OBJECTIVE: Itraconazole (ITZ), a widely used systemic antifungal drug, has been ingeniously repurposed for its antitumor effects. In the present work, we have prepared and optimized the ITZ-loaded transferosomes by Quality by Design (QbD) approach and repurposed them for skin cancer. METHODS: The transferosomal formulation was optimized by employing a QbD approach with the design of experiment. A combination of screening and optimization design was used for formulation optimization. The optimized formulation was characterized by particle size, PDI, zeta potential, FTIR, XRD, and surface morphology using TEM. In vitro and ex vivo studies were performed using Franz diffusion cells. An in vitro cell line study was performed on the human melanoma A375 cell line. RESULTS: The optimized formulation has a particle size of 192.37 ± 13.19 nm, PDI of 0.41 ± 0.03, zeta potential -47.80 ± 3.66, and an entrapment efficiency of 64.11 ± 3.75%. In vitro release studies showed that ITZ encapsulated transferosomes offer higher and sustained release than pure drugs. Ex vivo drug penetration and retention studies show that the penetration and retention of transferosomes are more visible in the skin than in the drug. The cell viability study confirms that ITZ encapsulated transferosomes have almost 2-fold more potency against the A375 cell line than pure drug. CONCLUSION: ITZ encapsulated transferosomes were successfully prepared and optimized using a combination of screening and optimization designs. Based on ex vivo and cell line studies, we conclude that ITZ-loaded transferosomes could aid melanoma management alongside standard therapies.
RESUMO
Mitapivat is a novel, first-in-class orally active pyruvate kinase activator approved by the US Food and Drug Administration in 2022 for the treatment of hemolytic anemia. There is no literature available regarding the identification of degradation impurities of mitapivat. The present study deals with the degradation behavior of mitapivat under various stress conditions such as hydrolytic, photolytic, thermal, and oxidative stress. The multivariate analysis found that the independent variables, that is, molarity, temperature, and time, are interacting with each other to affect the degradation of mitapivat. A specific, accurate, and precise high-performance liquid chromatographic (HPLC) method was developed to separate mitapivat from its degradation products. The separation was achieved on the C-18 column (250 mm × 4.6 mm × 5 µm) using the combination of 0.1% formic acid buffer and acetonitrile in gradient elution profile. The method was validated as per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use Q2(R2) guideline. LC-electrospray ionization-Quadrupole-time of flight was employed to identify degradation products. A total of seven novel degradation products of mitapivat were identified based on tandem mass spectrometry and accurate mass measurement. In-silico toxicity of mitapivat and its degradation products was qualitatively evaluated by the DEREK toxicity prediction tool.
Assuntos
Oxirredução , Hidrólise , Cromatografia Líquida de Alta Pressão , Fotólise , Estabilidade de Medicamentos , Espectrometria de Massas , Estrobilurinas/análise , Estrobilurinas/química , Estrutura MolecularRESUMO
Tyrosine kinase inhibitors (TKIs) are effective as a targeted treatment for chronic myeloid leukemia (CML), which can selectively suppress BCR-ABL1 kinase activity. CML therapy with TKIs combination has been supported by in-vitro, in-vivo, and patient-based data where the nilotinib-dasatinib co-administration has exerted superior anticancer efficacy with greater cellular uptake, less resistance to chemotherapy, and no additive adverse events encountered. Therefore, it is essential to develop a suitable analytical method for the simultaneous estimation of these drugs in the developed novel lipid nanocarriers like liposomes. Design of Experiment (DoE) has been implemented as a tool of QbD to systematically investigate the relation between the HPLC method attributes and analytical responses, i.e., chromatographic detection, quantification, and peak properties for dasatinib and nilotinib. An Ishikawa diagram is constructed to delineate possible influencing variables to the analytical performances. Afterward, 4 factors 2 level full factorial design (FFD) was employed to model and identify the main effects and interaction effects between the factors selected after the initial risk assessment. The suggested design space for optimized chromatographic conditions by QbD analysis is linear within the selected range of drug concentrations, accurate and precise, sensitive, and robust according to the ICH guidelines. The optimal method is comprised of a 1 mL/min flow rate of mobile phase (ACN and 20 mM KH2PO4 of pH 7.00) in gradient mode at 25 °C column temperature for 20 µL sample injection volume and detection wavelength fixed at 297 nm. Most importantly, this novel HPLC method is simple and selective enough to evaluate dasatinib and nilotinib content in the lipid nanocarriers.
Assuntos
Dasatinibe , Pirimidinas , Cromatografia Líquida de Alta Pressão/métodos , Dasatinibe/análise , Dasatinibe/química , Pirimidinas/análise , Pirimidinas/química , Reprodutibilidade dos Testes , Modelos Lineares , Lipossomos/química , Limite de Detecção , Nanopartículas/química , Lipídeos/química , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Humanos , Portadores de Fármacos/químicaRESUMO
Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.
Assuntos
Quitosana , Epilepsia do Lobo Temporal , Flavonóis , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Pilocarpina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/metabolismo , Quitosana/química , Quitosana/farmacologia , Flavonóis/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Nanopartículas/química , Masculino , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Fármacos Neuroprotetores/farmacologiaRESUMO
Exosomes are nanosized (size ~ 30-150 nm) natural vesicular structures released from cells by physiological processes or pathological circumstances. Exosomes are growing in popularity as a result of their many benefits over conventional nanovehicles, including their ability to escape homing in the liver or metabolic destruction and their lack of undesired accumulation before reaching their intended targets. Various therapeutic molecules, including nucleic acids, have been incorporated into exosomes by different techniques, many of which have shown satisfactory performance in various diseases. Surface-modified exosomes are a potentially effective strategy, and it increases the circulation time and produces the specific drug target vehicle. In this comprehensive review, we describe composition exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research and discuss future perspectives. In addition to the current status of exosomes as a therapeutic carrier, the lacuna in the clinical development lifecycles along with the possible strategies to fill the lacuna have been addressed.
RESUMO
BACKGROUND: Glioma refers to the most aggressive tumor in the central nervous system that starts from support cells or glial cells. The glial cell is the most common cell type in the CNS, and they insulate, surround, as well as feed, oxygen, and nutrition to the neurons. Seizures, headaches, irritability, vision difficulties, and weakness are some of the symptoms. Targeting ion channels is particularly helpful when it comes to glioma treatment because of their substantial activity in glioma genesis through multiple pathways. OBJECTIVE: In this study, we explore how distinct ion channels can be targeted for glioma treatment and summarize the pathogenic ion channels activity in gliomas. RESULTS: Current research found several side effects such as bone marrow suppression, alopecia, insomnia, and cognitive impairments for presently done chemotherapy. The involvement of research on ion channels in the regulation of cellular biology and towards improvements of glioma have expanded recognition of their innovative roles. CONCLUSION: Present review article has expanded knowledge of ion channels as therapeutic targets and detailed cellular mechanisms in the roles of ion channels in gliomas pathogenesis.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Canais Iônicos/uso terapêuticoRESUMO
INTRODUCTION: Chronotherapy is the administration of medication according to the biological rhythm to maximize pharmacological effects and minimize side effects. The objective of the current investigation is to prepare delayed-release beads (DRBs) containing montelukast sodium (MKS) for chronotherapy of asthma. METHODS: Delayed-release beads of alginate were prepared using a simple method, i.e., ionotropic gelation. The effect of cross-linking agents (zinc or calcium ions) and the concentration of chitosan on the properties of the beads were investigated. The prepared beads were coated by a polymer having pHindependent solubility, i.e., Eudragit RSPO and Eudragit RLPO in different ratios to achieve the desired lag time of 4-5 h. Beads were evaluated for surface morphology, practical yield, encapsulation efficiency, XRD, and in vitro release study. The pharmacokinetic study was carried out on New Zealand white male rabbits. RESULTS: No major differences in the drug release profile were observed between Ca++ and Zn++ crosslinked beads. However, a slight slow release was seen in the case of chitosan-reinforced beads. MKS released from cross-linked alginate beads was slightly altered with sodium alginate concentration, crosslinking time, and talc. At a higher alginate concentration, slow drug release was observed, whereas the addition of talc to alginate increased the release rate. The in vitro release study showed that the optimal formulation of DRBs has a lag time of 4.5 h, and the release at 6 h was found to be 74.9%. In vivo pharmacokinetic study of the beads showed Tmax at 7 h with an initial lag time of 4 h. CONCLUSION: When dosed at sleep time, the prepared cross-linked beads may deliver montelukast sodium required to relieve early morning symptoms in asthmatic patients.
Assuntos
Alginatos , Quitosana , Acetatos , Animais , Cronoterapia , Ciclopropanos , Preparações de Ação Retardada , Ácido Glucurônico , Ácidos Hexurônicos , Masculino , Ácidos Polimetacrílicos , Quinolinas , Coelhos , Sulfetos , TalcoRESUMO
The aim of this study was to stabilize the amorphous form of Ritonavir (RTV) a BCS class-II drug with known amorphous stabilizing small molecule Indomethacin (IND) by co-amorphous technology. The co-amorphous samples were prepared by solvent evaporation technique in the molar ratios RTV:IND (2:1), RTV:IND (1:1), RTV:IND (1:2) and their amorphous nature was confirmed by XRPD, DSC and FT-IR. Physical stability studies were carried out at temp 25°C and 40°C for maximum up to 90 days under dry conditions. Solubility and dissolution testing were carried out to investigate the dissolution advantage of prepared co-amorphous systems. The amorphous mixtures of all tested molar ratios were found to become amorphous after solvent evaporation. The same was confirmed by detecting halo pattern in diffractograms of co-amorphous mixtures. The Tg values of all three systems were found to be more than 40°C, the highest being 51.88°C for RTV:IND (2:1) system. Theoretical Tg values were calculated by Gordon-Taylor equation. Insignificant deviation of theoretical Tg values from that of practical one, corroborated by FT-IR studies showed no evidence of intermolecular interactions between RTV and IND. Almost 3-folds increase in the solubility for both amorphous RTV and IND was found as compared to their respective crystalline counterparts. The study demonstrated significant increase in the dissolution rate as well as increase in the total amount of drug dissolved for amorphous RTV, however it failed to demonstrate any significant improvement in the dissolution behavior of IND.
Assuntos
Indometacina/química , Ritonavir/química , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Vidro , Difração de Pó , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Difração de Raios XRESUMO
The purpose of present study was to design, optimize and evaluate osmotically controlled pulsatile release capsule (PRC) of montelukast sodium (MKS) for the prevention of episodic attack of asthma in early morning and associated allergic rhinitis. Assembly of the capsular systems consisted of push, active and plug tablet arranged from bottom to top in hard gelatin capsule. The capsule system was coated with a semi-permeable membrane of cellulose acetate and drilled towards plug side in cap. A three-factor, three-level central composite design (CCD) with α = 1 was introduced to execute the experiments and quadratic polynomial model was generated to predict and assess the independent variables with respect to the dependent variables. The composition of optimal formulation was determined as weight of push tablet 138 mg (coded value: +0.59), plug tablet 60 mg (coded value: +0.49) and coating weight gain of 8.4 mg (coded value: -0.82). The results showed that the optimal formulation of PRCs had lag time of 4.5 h, release at 6 and 12 h are 61.95% and 96.29%, respectively. The X-ray radiographic imaging study was carried out to monitor the in vivo behavior of developed barium sulfate-loaded PRCs in rabbits under fasting conditions. In vivo pharmacokinetic study revealed Tmax of 2 h for marketed tablets; however 7 h for PRCs with initial lag time of 4 h. Thus designed capsular system may be helpful for patients with episodic attack of asthma in early morning and associated allergic rhinitis.
Assuntos
Acetatos/administração & dosagem , Acetatos/farmacocinética , Cronoterapia/métodos , Osmose , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Animais , Cápsulas , Ciclopropanos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Coelhos , SulfetosRESUMO
OBJECTIVE: To develop a liquid-liquid extraction based reverse phase liquid chromatography method for estimation of montelukast in rabbit plasma. METHODS: Chromatographic separation was carried out using Phenomenex Luna C18 column (250 mm × 4.6 mm × 5 µm) with mobile phase composed of ammonium acetate buffer (20 Mm), pH 5.5 and acetonitrile in 20:80, v/v ratio. The analyte was monitored with UV detector at 345 nm. The developed method was validated with respect to linearity, accuracy, precision, specificity and stability. RESULTS: The peak area ratio of montelukast (MKS) to that of internal standard was used for the quantification of samples. Calibration curves were linear in the concentration range of 20-2000 ng mL(-1). The LOD and LLOQ of present method were found out to be 10 ng mL(-1) and 20 ng mL(-1) respectively. The intra-day and inter-day %CV values for MKS were below 6.06% and 8.43%. Intra-day and inter-day accuracies were within 95.81% and 110.90%, respectively. Extraction recoveries of drug from rabbit plasma were >66.47%. CONCLUSION: A simple, alternative, reproducible and sensitive HPLC-UV method was developed for MKS that can be used in preclinical pharmacokinetics.
RESUMO
The purpose of the study was to formulate and evaluate controlled release chitosan microspheres of mirtazapine (MTZ) to improve the bioavailability by altering the pharmacokinetic profiles of the drug. Chitosan microspheres were prepared to prolong the release of the drug into the systemic circulation. Microspheres were prepared by a single water in oil (w/o) emulsion technique varying the chitosan/drug ratio, stirring speed and concentration of the crosslinking agent (glutaraldehyde). Drug-polymer compatibility studies were carried out using fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The microspheres were evaluated for encapsulation efficiency, particle size, surface morphology, swelling index, in vitro release, as well as erosion and in vivo studies in rats. The FT-IR and DSC studies revealed no interaction between drug and polymer. The encapsulation efficiency of different formulation varied from 53 ± 1.2% to 78 ± 1.5%. The mean particle size of the optimized formulation F-14 was 106.4 ± 0.5 µm. Surface morphology revealed that chitosan microspheres were discrete and spherical in shape with a porous surface. The release of MTZ from chitosan microspheres was rapid up to 4 h, and then it was continuously and slowly released up to 48 h. Optimized formulation (F-14) was found to be stable under accelerated storage conditions based on International Conference on Harmonisation guidelines. Pharmacokinetic studies revealed that the optimized formulation showed significant increases in systemic exposure (AUC = 177.70 ± 7.39 µg·h/mL), half-life (4.72 ± 0.46 h) and reduced clearance (0.009 ± 0.0001 L/h) compared to pure drug administration. Hence, the present study demonstrates that controlled release formulation of MTZ microspheres using chitosan can improve pharmacokinetic profiles of MTZ.