Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Morphol Kinesiol ; 9(2)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921640

RESUMO

The study assessed vastus lateralis oxygen desaturation kinetics (SmO2) in 32 male cyclists (16 Seniors, 16 Juniors) during a 30 s sprint, examining effects of age and performance. An incremental test was used to determine ventilatory thresholds (VT1, VT2) and maximal oxygen uptake (VO2kg), followed by a sprint test to evaluate anaerobic performance. Cyclists' performance phenotype was determined as the ratio of power at VT2 to 5 s peak sprint power. Juniors exhibited sprinter-like traits, excelling in all functional tests except for lactate levels post-sprint. SmO2 data showed no age-related or bilateral differences across participants. The combined mean response time (MRT) revealed stronger bilateral goodness of fit (R2 = 0.64) than individual time delay (TD) and time constant (τ). Higher VO2kg at VT2, peak power, and maximal uptake were linked to longer TD, while shorter TD correlated with higher lactate production and increased fatigue. Bilaterally averaged SmO2 kinetics distinguished between sprint and endurance athletes, indicating the potential to reflect the alactic anaerobic system's capacity and depletion. Age did not affect desaturation rates, but younger cyclists showed greater response amplitude, attributed to a higher initial baseline rather than maximal desaturation at the end of the exercise.

2.
Sports (Basel) ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393260

RESUMO

This study focused on comparing metabolic thresholds derived from local muscle oxygen saturation (SmO2) signals, obtained using near-infrared spectroscopy (NIRS), with global pulmonary ventilation rates measured at the mouth. It was conducted among various Age Groups within a well-trained cyclist population. Additionally, the study examined how cycling performance characteristics impact the discrepancies between ventilatory thresholds (VTs) and SmO2 breakpoints (BPs). METHODS: Junior (n = 18) and Senior (n = 15) cyclists underwent incremental cycling tests to assess their aerobic performance and to determine aerobic (AeT) and anaerobic (AnT) threshold characteristics through pulmonary gas exchange and changes in linearity of the vastus lateralis (VL) muscle SmO2 signals. We compared the relative power (Pkg) at ventilatory thresholds (VTs) and breakpoints (BPs) for the nondominant (ND), dominant (DO), and bilaterally averaged (Avr) SmO2 during the agreement analysis. Additionally, a 30 s sprint test was performed to estimate anaerobic performance capabilities and to assess the cyclists' phenotype, defined as the ratio of P@VT2 to the highest 5 s sprint power. RESULTS: The Pkg@BP for Avr SmO2 had higher agreement with VT values than ND and DO. Avr SmO2 Pkg@BP1 was lower (p < 0.05) than Pkg@VT1 (mean bias: 0.12 ± 0.29 W/kg; Limits of Agreement (LOA): -0.45 to 0.68 W/kg; R2 = 0.72) and mainly among Seniors (0.21 ± 0.22 W/kg; LOA: -0.22 to 0.63 W/kg); there was no difference (p > 0.05) between Avr Pkg@BP2 and Pkg@VT2 (0.03 ± 0.22 W/kg; LOA: -0.40 to 0.45 W/kg; R2 = 0.86). The bias between two methods correlated significantly with the phenotype (r = -0.385 and r = -0.515 for AeT and AnT, respectively). CONCLUSIONS: Two breakpoints can be defined in the NIRS-captured SmO2 signal of VL, but the agreement between the two methods at the individual level was too low for interchangeable usage of those methods in the practical training process. Older cyclists generally exhibited earlier thresholds in muscle oxygenation signals compared to systemic responses, unlike younger cyclists who showed greater variability and no significant differences in this regard in bias values between the two threshold evaluation methods with no significant difference between methods. More sprinter-type cyclists tended to have systemic VT thresholds earlier than local NIRS-derived thresholds than athletes with relatively higher aerobic abilities.

3.
J Funct Morphol Kinesiol ; 8(2)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37218860

RESUMO

The aim of the present study was to compare and analyse the relationships between pulmonary oxygen uptake and vastus lateralis (VL) muscle oxygen desaturation kinetics measured bilaterally with Moxy NIRS sensors in trained endurance athletes. To this end, 18 trained athletes (age: 42.4 ± 7.2 years, height: 1.837 ± 0.053 m, body mass: 82.4 ± 5.7 kg) visited the laboratory on two consecutive days. On the first day, an incremental test was performed to determine the power values for the gas exchange threshold, the ventilatory threshold (VT), and V̇O2max levels from pulmonary ventilation. On the second day, the athletes performed a constant work rate (CWR) test at the power corresponding to the VT. During the CWR test, the pulmonary ventilation characteristics, left and right VL muscle O2 desaturation (DeSmO2), and pedalling power were continuously recorded, and the average signal of both legs' DeSmO2 was computed. Statistical significance was set at p ≤ 0.05. The relative response amplitudes of the primary and slow components of VL desaturation and pulmonary oxygen uptake kinetics did not differ, and the primary amplitude of muscle desaturation kinetics was strongly associated with the initial response rate of oxygen uptake. Compared with pulmonary O2 kinetics, the primary response time of the muscle desaturation kinetics was shorter, and the slow component started earlier. There was good agreement between the time delays of the slow components describing global and local metabolic processes. Nevertheless, there was a low level of agreement between contralateral desaturation kinetic variables. The averaged DeSmO2 signal of the two sides of the body represented the oxygen kinetics more precisely than the right- or left-leg signals separately.

4.
Exp Brain Res ; 241(5): 1309-1318, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000201

RESUMO

We explored the phenomenon of unintentional force drift seen in the absence of visual feedback during knee extension contractions in isometric conditions. Based on the importance of knee extensors for the anti-gravity function, we hypothesized that such force drifts would be slower and smaller compared to those reported for the upper extremities. We also explored possible effects of foot dominance and gender on the force drifts. Young healthy persons produced isometric knee extension contractions to different levels, ranging from 15 to 25% of maximal voluntary contraction force, with the help of visual feedback, and then, the visual feedback was turned off. Force change over the time interval without visual feedback was quantified. In the absence of visual feedback, force drifted to smaller magnitudes. The drift magnitude expressed in percent of the initial force magnitude was smaller for smaller initial force levels, ranging between 8 and 15% of the initial force for the initial force magnitude of 15% and 25% of maximal voluntary contraction force. The time exponent of the force drift was independent of the initial force magnitude and was, on average, 6.45 s. There were no significant effects of foot dominance or gender, although the male subjects tended to show stronger scaling of the drift magnitude with the initial force level compared to the female subjects. The results show that unintentional force drift is a common phenomenon across limbs and muscle groups. This conclusion fits the theory of control with spatial referent coordinates and the general tendency of all natural systems to drift to states with lower potential energy.


Assuntos
Dedos , Desempenho Psicomotor , Humanos , Masculino , Feminino , Dedos/fisiologia , Desempenho Psicomotor/fisiologia , Retroalimentação Sensorial/fisiologia , Contração Isométrica , Extremidade Inferior
5.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641364

RESUMO

A simple and fast method for the analysis of lactate from a single drop of blood was developed. The finger-prick whole blood sample (10 µL) was diluted (1:20) with a 7% (w/v) solution of [tris(hydroxymethyl)methylamino] propanesulfonic acid and applied to a blood plasma separation device. The device accommodates a membrane sandwich composed of an asymmetric polysulfone membrane and a supporting textile membrane that allows the collection of blood plasma into a narrow glass capillary in less than 20 s. Separated and simultaneously diluted blood plasma was directly injected into a capillary electrophoresis instrument with a contactless conductivity detector (CE-C4D) and analyzed in less than one minute. A separation electrolyte consisted of 10 mmol/L l-histidine, 15 mmol/L dl-glutamic acid, and 30 µmol/L cetyltrimethylammonium bromide. The whole procedure starting from the finger-prick sampling until the CE-C4D analysis was finished, took less than 5 min and was suitable for monitoring lactate increase in blood plasma during incremental cycling exercise. The observed lactate increase during the experiments measured by the developed CE-C4D method correlated well with the results from a hand-held lactate analyzer (R = 0.9882). The advantage of the developed CE method is the speed, significant savings per analysis, and the possibility to analyze other compounds from blood plasma.


Assuntos
Atletas/psicologia , Condutividade Elétrica , Eletroforese Capilar/métodos , Exercício Físico , Ácido Láctico/sangue , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA