RESUMO
Introduction: The presented study investigated the potential toxicity and safety concerns associated with transgenic maize seeds expressing immunogenic F and HN protein genes against Newcastle disease virus (NDV). Methodology: The experiment involved feeding Sprague-Dawley rats with transgenic maize seeds formulated into standard diets at levels of 30% (w/w) for a duration of 90 days. The rats were divided into three groups, with 10 rats per group. We assessed various parameters including overall appearance, feed consumption, body weight, organ weight, hematological parameters, serum chemistry, and histopathology. Results: The results of these assessments were compared between the control group and the treatment groups. The study findings revealed that there were no significant differences between the control and treatment groups in terms of overall appearance, feed consumption, body weight, organ weight, hematological parameters, serum chemistry, microscopic histopathology, and gross appearance of tissues. These observations suggest that the consumption of transgenic maize seeds did not lead to any treatment-related adverse effects or toxicological issues. Furthermore, the transgenic maize seeds were found to be nutritionally equivalent to their non-transgenic counterpart. Conclusion: Overall, no physiological, pathological, or molecular toxicity was observed in the Rats fed with transgenic feed.However, it is important to note that this study focused specifically on the parameters measured and the outcomes observed in Sprague-Dawley rats, and further research and studies are necessary to fully evaluate the safety and potential applications of transgenic edible vaccines in humans or other animals.
RESUMO
The whitefly, a polyphagous insect pest feeding on nearly 1328 plant species, is a major threat to global cotton production and incurs up to 50% yield losses in cotton production in Pakistan. We investigated whether increased aspartate in phloem sap imparts whitefly toxicity and protects cotton plants from intense damage. The enzymatic step for aspartate production is carried through aspartate aminotransferase (AAT). In this study, we constitutively overexpressed the Oryza sativa cytoplasmic AAT (OsAAT2) under the CaMV35S promoter in Gossypium hirsutum cv. CIM-482. Real-time PCR analysis of the AAT transcripts revealed a 2.85- to 31.7-fold increase in mRNA levels between the different cotton lines. A substantial increase in the free-amino acid content of the major N-assimilation and transport amino acids (aspartate, glutamate, asparagine, and glutamine) was seen in the phloem sap of the transgenic cotton lines. The bioassay revealed that the two transgenic cotton lines with the highest free aspartate content in the phloem sap exhibited 97 and 94% mortality in the adult whitefly population and a 98 and 96% decline in subsequent nymph populations, respectively. There was also a significant change in the physiological behaviour of the transgenic cotton lines, with an increased net assimilation (A), gaseous exchange (Gs) and rate of transpiration (E). Improved morphological characteristics like plant height, total number of bolls and fiber yield were recorded in transgenic cotton lines. The AAT gene shows promise in mitigating whitefly infestations and enhancing the overall health and yield of cotton plants.
Assuntos
Ácido Aspártico , Gossypium , Hemípteros , Plantas Geneticamente Modificadas , Gossypium/genética , Gossypium/metabolismo , Gossypium/parasitologia , Animais , Hemípteros/fisiologia , Plantas Geneticamente Modificadas/genética , Ácido Aspártico/metabolismo , Oryza/genética , Oryza/parasitologia , Oryza/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética , Floema/metabolismo , Floema/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genéticaRESUMO
Introduction: Genetic engineering has revolutionized agriculture by transforming biotic and abiotic stress-resistance genes in plants. The biosafety of GM crops is a major concern for consumers and regulatory authorities. Methodology: A 14-week biosafety and toxicity analysis of transgenic cotton, containing 5 transgenes ((Cry1Ac, Cry2A, CP4 EPSPS, VIP3Aa, and ASAL)), was conducted on albino mice. Thirty mice were divided into three groups (Conventional, Non-transgenic, without Bt, and transgenic, containing targeted crop) according to the feed given, with 10 mice in each group, with 5 male and 5 female mice in each group. Results: During the study, no biologically significant changes were observed in the non-transgenic and transgenic groups compared to the control group in any of the study's parameters i.e. increase in weight of mice, physiological, pathological, and molecular analysis, irrespective of the gender of the mice. However, a statistically significant change was observed in the hematological parameters of the male mice, while no such change was observed in the female study group mice. The expression analysis, however, of the TNF gene increases many folds in the transgenic group as compared to the non-transgenic and conventional groups. Conclusion: Overall, no physiological, pathological, or molecular toxicity was observed in the mice fed with transgenic feed. Therefore, it can be speculated that the targeted transgenic crop is biologically safe. However, more study is required to confirm the biosafety of the product on the animal by expression profiling.
RESUMO
Actin dynamics is pivotal in controlling cotton fiber elongation and the onset of secondary wall biosynthesis. We report that overexpression of GhACTIN1 under fiber fiber-specific promoter, GhSCFP, improves cotton fiber length, strength, and micronaire value. However, the effect of transgene has a more positive effect on fiber strength and micronaire value than fiber length. F-actin quantification and cellulose contents measurement in transgenic developing cotton fiber during the elongation phase showed an increase of up to 8.7% and 4.7% respectively. Additionally, physiological factors such as water use efficiency showed no significant change in transgenic cotton lines, while stomatal conductance and photosynthetic rate were significantly increased. Moreover, agronomical data determined that lint percentage (GOT) and seed cotton yield also increased up to 4.6% and 29.5% respectively, in transgenic cotton lines compared to the control lines. Our data demonstrate that the GhACTIN1 gene is a strong candidate gene for cotton fiber and yield improvement.
Assuntos
Actinas , Fibra de Algodão , Regiões Promotoras Genéticas , Actinas/genética , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Sementes/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
MAIN CONCLUSION: Multiplexed Cas9-based genome editing of cotton resulted in reduction of viral load with asymptomatic cotton plants. In depth imaging of proteomic dynamics of resulting CLCuV betasatellite and DNA-A protein was also performed. The notorious cotton leaf curl virus (CLCuV), which is transmitted by the sap-sucking insect whitefly, continuously damages cotton crops. Although the application of various toxins and RNAi has shown some promise, sustained control has not been achieved. Consequently, CRISPR_Cas9 was applied by designing multiplex targets against DNA-A (AC2 and AC3) and betasatellite (ßC1) of CLCuV using CRISPR direct and ligating into the destination vector of the plant using gateway ligation method. The successful ligation of targets into the destination vector was confirmed by the amplification of 1049 bp using a primer created from the promoter and target, while restriction digestion using the AflII and Asc1 enzymes determined how compact the plasmid developed and the nucleotide specificity of the plasmid was achieved through Sanger sequencing. PCR confirmed the successful introduction of plasmid into CKC-1 cotton variety. Through Sanger sequencing and correlation with the mRNA expression of DNA-A and betasatellite in genome-edited cotton plants subjected to agroinfiltration of CLCuV infectious clone, the effectiveness of knockout was established. The genome-edited cotton plants demonstrated edited efficacy of 72% for AC2 and AC3 and 90% for the (ßC1) through amplicon sequencing, Molecular dynamics (MD) simulations were used to further validate the results. Higher RMSD values for the edited ßC1 and AC3 proteins indicated functional loss caused by denaturation. Thus, CRISPR_Cas9 constructs can be rationally designed using high-throughput MD simulation technique. The confidence in using this technology to control plant virus and its vector was determined by the knockout efficiency and the virus inoculation assay.
Assuntos
Sistemas CRISPR-Cas , Gossypium , Carga Viral , Gossypium/genética , Sistemas CRISPR-Cas/genética , Proteômica , DNARESUMO
Genetically modified (GM) crops expressing insecticidal crystal proteins are widely accepted worldwide, but their commercial utilization demands comprehensive risk assessment studies. A 90-day risk assessment study was conducted on Wistar rats fed with GM maize (CEMB-413) expressing binary insect-resistant genes (cry1Ac and cry2Ab) at low (30%) and high (50%) dose along with a control diet group. The study used fifty Wistar rats randomly distributed in five treatment groups. Our study revealed that compared to controls, GM diet had no adverse effects on animal's health, including body weight, food consumption, clinical pathological parameters, serum hormone levels and histological parameters of testes and ovaries of rats. Differences were observed in transcripts levels of fertility related genes, but these were independent of treatment with GM diet.
Assuntos
Proteínas de Bactérias , Zea mays , Ratos , Animais , Ratos Wistar , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Zea mays/efeitos adversos , Proteínas de Bactérias/genética , Animais Geneticamente Modificados , Insetos/genética , Endotoxinas/genética , Proteínas Hemolisinas/genéticaRESUMO
Fiber growing inside the cotton bolls is a highly demandable product and its quality is key to the success of the textile industry. Despite the various efforts to improve cotton fiber staple length Pakistan has to import millions of bales to sustain its industrial needs. To improve cotton fiber quality Bacterial cellulose synthase (Bcs) genes (acsA, acsB) were expressed in a local cotton variety CEMB-00. In silico studies revealed a number of conserved domains both in the cotton-derived and bacterial cellulose synthases which are essential for the cellulose synthesis. Transformation efficiency of 1.27% was achieved by using Agrobacterium shoot apex cut method of transformation. The quantitative mRNA expression analysis of the Bcs genes in transgenic cotton fiber was found to be many folds higher during secondary cell wall synthesis stage (35 DPA) than the expression during elongation phase (10 DPA). Average fiber length of the transgenic cotton plant lines S-00-07, S-00-11, S-00-16 and S-00-23 was calculated to be 13.02% higher than that of the non-transgenic control plants. Likewise, the average fiber strength was found to be 20.92% higher with an enhanced cellulose content of 22.45%. The mutated indigenous cellulose synthase genes of cotton generated through application of CRISPR/Cas9 resulted in 6.03% and 12.10% decrease in fiber length and strength respectively. Furthermore, mature cotton fibers of transgenic cotton plants were found to have increased number of twists with smooth surface as compared to non-transgenic control when analyzed under scanning electron microscope. XRD analysis of cotton fibers revealed less cellulose crystallinity index in transgenic cotton fibers as compared to control fibers due to deposition of more amorphous cellulose in transgenic fibers as a result of Bcs gene expression. This study paved the way towards unraveling the fact that Bcs genes influence cellulose synthase activity and this enzyme helps in determining the fate of cotton fiber length and strength.
Assuntos
Celulose , Fibra de Algodão , Glucosiltransferases/genética , Gossypium/genética , Regulação da Expressão Gênica de PlantasRESUMO
MAIN CONCLUSION: VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes. CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90-99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars' analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.
Assuntos
Solanum tuberosum , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Açúcares/metabolismoRESUMO
BACKGROUND: Cotton is continuously exposed to sucking and chewing insect pest pressure since emergence to harvesting. Pink bollworm (Pectinophora gossypiella) has become major chewing insect pest to reduce the cotton yield and results in bad lint quality even in transgenic crops. The efficiency of insecticidal genes has been compromised due to extensive utilization of transgenic crops. METHODS AND RESULTS: The present study was conducted to evaluate the efficacy of an alternate cry1Ia12 insecticidal gene against pink bollworm (PBW) in cotton. Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA2300 expression vector containing cry1Ia12 gene under the control of 35S CaMV was used to transform a local cotton cultivar GS-01. The various molecular analyses revealed the transgene integration and expression in primary transformants. Among five selected transgenic plants, tcL-08 showed maximum (16.06-fold) mRNA expression of cry1Ia12 gene whereas tcL-03 showed minimum (2.33-fold) expression. Feeding bioassays of 2nd and 3rd instar pink bollworm (PBW) larvae on immature cotton bolls, flowers and cotton squares revealed up to 33.33% mortality on tcL-08 while lowest mortality (13.33%) was observed in tcL-03 and tcL-15. Furthermore, the average weight and size of survived larvae fed on transgenic plants was significantly lesser than the average weight of larvae survived on non-transgenic plants. CONCLUSIONS: The present study suggests the cry1Ia12 gene as an alternate insecticidal gene for the resistance management of cotton bollworms, especially PBW.
Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Toxinas de Bacillus thuringiensis , Inseticidas/farmacologia , Proteínas Hemolisinas/genética , Endotoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mariposas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Larva/genética , Larva/metabolismo , Gossypium/genética , Gossypium/metabolismo , Controle de Pragas , Resistência a Inseticidas/genéticaRESUMO
Stacking multiple genes into cotton crop to cop up multiple biotic stresses such as insects and weeds is a promising tool to save crop from losses. Transgenic cotton variety, VH-289, with double Bt and cp4EPSPS genes under the control of 35S promoter was used for the expression analyses and biosafety studies. The transgenic cotton plants were screened through PCR amplification of fragments, 1.7 kb for Cry1Ac, 582 bp for Cry2A and 250 bp for cp4EPSPS; which confirmed the presence of all genes transformed in transgenic cotton. The Cry1Ac + Cry2A and cp4EPSPS proteins were quantified through ELISA in transgenic cotton plants. The Glyphosate assay performed by spraying 1900 mL per acre of glyphosate Roundup further confirmed complete survival of transgenic cotton plants as compared to the non-transgenic cotton plants and all weeds. Similarly, insect infestation data determined that almost 99% insect mortality was observed in controlled field grown transgenic cotton plants as compared to the non-transgenic control plants. Evaluation of effect of temperature and soil nutrients availability on transgene expression in cotton plants was done at two different cotton growing regions, Multan and Lahore, Pakistan and results suggested that despite of higher temperature in Multan field, an increased level of Cry and cp4EPSPS proteins was recorded due to higher soil organic matter availability compared to Lahore field. Before commercialization of any transgenic variety its biosafety study is mandatory so, a 90 days biosafety study of the transgenic cotton plants with 40% transgenic cottonseeds in standard diet showed no harmful effect on wister rat model when studied for liver function, renal function and serum electrolyte.
Assuntos
Glicina/análogos & derivados , Gossypium/efeitos dos fármacos , Gossypium/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Lepidópteros , Plantas Daninhas/efeitos dos fármacos , Animais , Dieta/métodos , Endotoxinas/genética , Endotoxinas/metabolismo , Glicina/farmacologia , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Larva , Testes de Função Hepática , Masculino , Modelos Animais , Paquistão , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Ratos , Ratos Wistar , Medição de Risco , Sementes/genética , Sementes/metabolismo , Transgenes , GlifosatoRESUMO
BACKGROUND: Gossypium arboreum is a cotton crop native to tropical and subtropical regions that are naturally resistant to cotton leaf curl virus (CLCuV). However, its cultivation is unfavorable due to the lower quality and shorter fiber length of cotton when compared to the market leading G. hirsutum. Plasma membrane intrinsic protein 2 (PIP2) is an aquaporin responsible for the transport of water and small molecules across cellular membranes. This fluid transport influences cell elongation and cotton fibre development. Hence, increased PIP2 expression may yield plants with enhanced fiber qualities including length. METHODS AND RESULTS: To test this hypothesis, G. arboreum was transformed with a PIP2 gene construct (35SCpPIP2) using the Agrobacterium-mediated shoot apex cutting method. Relative expression of the CpPIP2 gene in transgenic plants increased up to 35-fold when compared with non-transgenic controls. Transgenic plants displayed a corresponding increase of staple length (up to 150%) when compared with non-transgenic controls. Transgene integration was examined using FISH and karyotyping and revealed the presence of a single transgene located on chromosome 6. CONCLUSION: Since G. arboreum is naturally whitefly and CLCuV resistant, this improvement of fiber length evidenced for CpPIP2 transgenic plants renders their crop production more economically viable.
Assuntos
Begomovirus , Gossypium , Begomovirus/genética , Membrana Celular , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
BACKGROUND: The efficacy of Bt crystal proteins has been compromised due to their extensive utilization in the field. The second-generation Bt vegetative insecticidal proteins could be the best-suited alternative to combat resistance build-up due to their broad range affinity with midgut receptors of insects. MATERIAL AND RESULTS: The codon-optimized synthetic vegetative insecticidal proteins (Vip3Aa) gene under the control of CaMV35S promoter was transformed into a locally developed transgenic cotton variety (CKC-01) expressing cry1Ac and cry2A genes. Transformation efficiency of 1.63% was recorded. The highest Vip3Aa expression (51.98-fold) was found in MS3 transgenic cotton plant. Maximum Vip3Aa protein concentration (4.23 µg/mL) was calculated in transgenic cotton plant MS3 through ELISA. The transgenic cotton plant (MS3) showed one copy number on both chromatids in the homozygous form at chromosome 8 at the telophase stage. Almost 99% mortality of H. armigera was recorded in transgenic cotton plants expressing double crystal proteins pyramided with Vip3Aa gene as contrasted to transgenic cotton plant expressing only double crystal protein with 70% mortality. CONCLUSIONS: The results obtained during this study suggest that the combination of Bt cry1Ac, cry2A, and Vip3Aa toxins is the best possible alternative approach to combat chewing insects.
Assuntos
Toxinas de Bacillus thuringiensis , Mariposas , Animais , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Insetos/genética , Resistência a Inseticidas/genética , Larva , Mariposas/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
Sugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70-76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer's field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.
Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Controle de Pragas/métodos , Plantas Geneticamente Modificadas/genética , Saccharum/genética , Animais , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/parasitologia , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas/genética , Larva , Mariposas , Proteínas de Plantas/genética , Plantas Daninhas , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/parasitologia , Saccharum/efeitos dos fármacos , Saccharum/parasitologia , GlifosatoRESUMO
Sucking insects require a surface of plants on which the legs and the eggs of insects will adhere and to which insect mouthparts will access. The primary plant protection against insects is their surface property, which hinders the attachment of the insect's legs and eggs. The epicuticular waxes chemistry influences the fine structure of the cuticular surface. In current study, an attempt was made to investigate the variation of chemical compounds in epicuticular waxes of four cotton species that classify them resistant or susceptible i.e., Gossypium abroreum, G. hirsutum, G. arboreum wax deficient mutant (GaWM3) and G. harknessi which were evaluated for their interaction with whitefly and CLCuV transmission. Gossypium hirsutum an insect and CLCuV susceptible cotton variety, was found to have four compounds namely Trichloroacetic acid, hexadecylester, P-xylenolpthalein, 2-cyclopentene-1-ol, 1-phenyl-and Phenol, 2,5-bis [1,1- dimethyl] which could interact with chitin of whitefly while only two compounds in Gossypium arboreum an insect and CLCuV resistant cotton variety could interact with chitin of whitefly. Similarly, GaWM3 and Gossypium harkasnessi were found to have only a single compound. Number of whiteflies found on leaves of G. hirsutum was much higher as compared to other cotton species. Keeping this fact in mind a wax biosynthetic gene CER3, from Arabidopsis thaliana was transformed into G. hirsutum and the plants were evaluated for their resistance against whitefly and CLCuV transmission. In microscopic analysis transgenic plants clearly showed higher amounts of leaf waxes as compared to non-transgenics. The least whitefly population and CLCuV titer of <10,000 units was found in transgenic plants compared to non-transgenic cotton where it was ≈4.5X106 units that confirmed the role of wax in insect interaction and ultimately to CLCuV transmission. This study provides novel insight on wax related compounds involved in cotton-whitefly interaction, which potentially can help in developing more efficient control strategies for this destructive pest.
Assuntos
Gossypium/genética , Hemípteros/genética , Ceras/metabolismo , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genéticaRESUMO
Gossypium arboreum (Desi Cotton) holds a special place in cotton industry because of its inherent ability to withstand drought, salinity, and remarkable resistance to sucking pests and cotton leaf curl virus. However, it suffers yield losses due to weeds and bollworm infestation. Genetic modification of G. arboreum variety FBD-1 was attempted in the current study to combat insect and weedicide resistance by incorporating cry1Ac, cry2A and cp4-EPSPS genes under control of 35S promoter in two different cassettes using kanamycin and GUS as markers through Agrobacterium-mediated shoot apex cut method of cotton transformation. The efficiency of transformation was found to be 1.57%. Amplification of 1700 bp for cry1Ac, 167 bp for cry2A and 111 bp for cp4-EPSPS confirmed the presence of transgenes in cotton plants. The maximum mRNA expression of cry1Ac and cp4-EPSPS was observed in transgenic cotton line L3 while minimum in transgenic cotton line L1. The maximum protein concentrations of Cry1Ac, Cry2A and Cp4-EPSPS of 3.534 µg g-1, 2.534 µg g-1 and 3.58 µg-g-1 respectively were observed for transgenic cotton line L3 as compared to control cotton line. On leaf-feed-based insect bioassay, almost 99% mortality was observed for Helicoverpa armigera on the transgenic cotton plant (L3). It completely survived the 1900 ml hectare-1 glyphosate spray assay as compared to non-transgenic cotton plants. The necrotic spots appeared on the third day, leading to the complete death of control plants on the fifth day of assay. The successful multiple gene-stacking in G. arboreum FBD-1 variety could be further used for qualitative improvement of cotton fiber through plant breeding techniques.
Assuntos
Gossypium , Mariposas , Animais , Proteínas de Bactérias/genética , Endotoxinas , Gossypium/genética , Proteínas Hemolisinas/genética , Melhoramento Vegetal , Plantas Geneticamente ModificadasRESUMO
KEY MESSAGE: Second generation Bt insecticidal toxin in comibination with Allium sativum leaf agglutinin gene has been successfully expressed in cotton to develop sustainable resistance against major chewing and sucking insects. The first evidence of using the Second-generation Bt gene in combination with Allium sativum plant lectin to develop sustainable resistance against chewing and sucking insects has been successfully addressed in the current study. Excessive use of Bt δ-endotoxins in the field is delimiting its insecticidal potential. Second-generation Bt Vip3Aa could be the possible alternative because it does not share midgut receptor sites with any known cry proteins. Insecticidal potential of plant lectins against whitefly remains to be evaluated. In this study, codon-optimized synthetic Bt Vip3Aa gene under CaMV35S promoter and Allium sativum leaf agglutinin gene under phloem-specific promoter were transformed in a local cotton variety. Initial screening of putative transgenic cotton plants was done through amplification, histochemical staining and immunostrip assay. The mRNA expression of Vip3Aa gene was increased to be ninefold in transgenic cotton line L6P3 than non-transgenic control while ASAL expression was found to be fivefold higher in transgenic line L34P2 as compared to non-transgenic control. The maximum Vip3Aa concentration was observed in transgenic line L6P3. Two copy numbers in homozygous form at chromosome number 9 and one copy number in hemizygous form at chromosome number 10 was observed in transgenic line L6P3 through fluorescent in situ hybridization. Significant variation was observed in transgenic cotton lines for morphological characteristics, whereas physiological parameters of plants and fiber characteristics (as assessed by scanning electron microscopic) remained comparable in transgenic and non-transgenic cotton lines. Leaf-detach bioassay showed that all the transgenic lines were significantly resistant to Helicoverpa armigera showing mortality rates between 78% and 100%. Similarly, up to 95% mortality of whiteflies was observed in transgenic cotton lines when compared with non-transgenic control lines.
Assuntos
Proteínas de Bactérias/genética , Gossypium/genética , Insetos , Lectinas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Aglutininas/genética , Animais , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Alho/genética , Dosagem de Genes , Gossypium/fisiologia , Hemípteros , Controle de Insetos , Mariposas , Regiões Promotoras GenéticasRESUMO
Recent studies have demonstrated a strong relationship between the intestinal microbiota and the host health. As such, consumers are increasingly becoming more concerned about the potential effect of certain foods/feeds, particularly of transgenic origin on the gut microbiota. Although the European Food Safety Authority has recommended in their guidelines, to study the effect of transgenic food/feed on host-microbiota, yet, few studies have focused on the evaluation of such effects mainly due to culturing difficulties. Therefore, this study was intended to evaluate the potential adverse effects of transgenic diet consumption on some specific gut microflora (Lactobacillus group, Bifidobacterium genus, Escherichia coli subgroup and Enterococcus genus) of rabbits. A total of forty-eight rabbits were randomly assigned into four groups and fed a diet containing a variable proportion of transgenic cottonseeds at 0, 20, 30 and 40% inclusion level, respectively. Changes in the specific or total faecal bacterial population were monitored at five different experimental stages (i.e. 0, 45, 90, 135 and 180 days) using both the traditional plate count method (TM) and quantitative real-time PCR (qPCR). No significant differences (p > .05) were observed concerning numbers of specific bacteria or total bacteria between the control and experimental groups, though qPCR showed numerically higher values in terms of 16S rRNA gene copies as compared to the values obtained from TM. However, such numerical differences were biologically insignificant (p > .05). Similarly, no significant variations were noticed in the calculated B/E (log10 copies of Bifidobacterium per g faces/log10 copies of E. coli genome per g faeces) ratios in all the groups. All the ratios were in the range of 1.24 to 1.30 throughout the experiment, indicating a good balance of intestinal microflora and greater resistance to intestinal disorders. It is therefore concluded that feeding transgenic cottonseeds could not adversely affect the gut microflora of rabbits during a long-term study.
Assuntos
Escherichia coli , Microbiota , Animais , Bifidobacterium , Fezes , RNA Ribossômico 16S , CoelhosRESUMO
The study aims to improve fiber traits of local cotton cultivar through genetic transformation of sucrose synthase (SuS) gene in cotton. Sucrose synthase (SuS) is an important factor that is involved in the conversion of sucrose to fructose and UDP-glucose, which are essential for the synthesis of cell wall cellulose. In the current study, we expressed a synthetic SuS gene in cotton plants under the control of a CaMV35S promoter. Amplification of an 813-bp fragment using gene-specific primers confirmed the successful introduction of SuS gene into the genome of cotton variety CEMB-00. High SuS mRNA expression was observed in two transgenic cotton plants, MA0023 and MA0034, when compared to the expression in two other transgenic cotton plants, MA0035 and MA0038. Experiments showed that SuS mRNA expression was positively correlated with SuS activity at the vegetative (54%) and reproductive stages (40%). Furthermore, location of transgene was found to be at chromosome no. 9 in the form of single insertion, while no signal was evident in non-transgenic control cotton plant when evaluated through fluorescent in situ hybridization and karyotyping analysis. Fiber analyses of the transgenic cotton plants showed increases of 11.7% fiber length, 18.65% fiber strength, and up to 5% cellulose contents. An improvement in the micronaire value of 4.21 was also observed in the MA0038 transgenic cotton line. Scanning electron microscopy (SEM) revealed that the fibers of the SuS transgenic cotton plants were highly spiral with a greater number of twists per unit length than the fibers of the non-transgenic control plants. These results determined that SuS gene expression influenced cotton fiber structure and quality, suggesting that SuS gene has great potential for cotton fiber quality improvement.
RESUMO
Newcastle disease (ND) is a viral disease that causes labored breathing, periorbital oedema, and ataxia in the majority of avian species. The available vaccines against Newcastle disease virus (NDV) are limited, owing to their low reactivity and multiple dosage requirements. Plant-based machinery provides an attractive and safe system for vaccine production. In the current study, we attempted to express fusion (F) and hemagglutinin-neuraminidase (HN) proteins (the protective antigens against NDV) under constitutive 35S and seed-specific Zein promoters, respectively. Almost 2-7.1-fold higher expression of F gene mRNA in transgenic corn leaves and 8-28-fold higher expression of HN gene mRNA in transgenic corn seeds were observed, when the expression was analyzed by real-time PCR on a relative basis as compared to non-transgenic control plant material (Leaves and seeds). Similarly, 1.66 µg/ml of F protein in corn leaves, i.e., 0.5% of total soluble protein, and 2.4 µg/ml of HN protein in corn seed, i.e., 0.8% of total seed protein, were found when calculated through ELISA. Similar levels of immunological response were generated in chicks immunized through injection of E. coli-produced pET F and pET HN protein as in chickens orally fed leaves and seeds of maize with expressed immunogenic protein. Moreover, the detection of anti-NDV antibodies in the sera of chickens that were fed maize with immunogenic protein, and the absence of these antibodies in chickens fed a normal diet, confirmed the specificity of the antibodies generated through feeding, and demonstrated the potential of utilizing plants for producing more vaccine doses, vaccine generation at higher levels and against other infectious diseases.
RESUMO
Genetically engineered crops expressing insecticidal and herbicide-tolerant traits offer a new strategy for crop protection and enhanced production; however, at the same time present a challenge in terms of toxicology and safety. The current experiment presents the findings of a 90-day feeding study in Sprague-Dawley rats with transgenic cottonseed which is expressing insecticidal Cry proteins (Cry1Ac and Cry2A), and tolerant to the herbicide glyphosate. There were 100 rats in this experiment divided into 5 groups of 10 rats/sex/group. Cottonseed from transgenic and control (near-isogenic) lines was formulated into standard diets at levels of 10% and 30% (w/w). All formulated diets were nutritionally balanced. Overall appearance, feed consumption, body weight, organ weight, haematology, serum chemistry and urinalysis were comparable between control and treatment groups. In addition, there was no treatment-related difference in findings of microscopic histopathology and gross appearance of tissues. In conclusion, following the 13-week of feeding transgenic cottonseed, no treatment-related adverse effects were observed in any of the parameters measured in this experiment. Thus, this study demonstrated that transgenic cottonseeds do not cause toxicity and are nutritionally equivalent to its conventional counterpart.