Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Am Chem Soc ; 146(43): 29664-29674, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39417990

RESUMO

Singlet fission (SF) and triplet-triplet annihilation upconversion (TTA-UC) nominally enable the interconversion of higher-energy singlet states with two lower-energy triplet states and vice versa, with both processes having envisaged application for enhanced solar power devices. The mechanism of SF/TTA-UC involves a complex array of different multiexcitonic triplet-pair states that are coupled by the exchange interaction to varying extents. In this work a family of bounded intramolecular SF materials, based upon the chromophore 1,6-diphenyl-1,3,5-hexatriene, were designed and synthesized. Their SF behavior was characterized using fluorescence lifetime, transient absorption, and magnetic field dependence studies. The capacity for the formation of weakly exchange-coupled triplet pairs, and subsequent spin-evolution, is shown to be strongly dependent upon the combined factors of oligomer size and geometry. By contextualizing these results with the wider SF literature, we present a general schematic model for SF/TTA-UC of greater completeness than portrayed elsewhere.

2.
J Am Chem Soc ; 146(42): 28985-28993, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39380134

RESUMO

Singlet fission (SF), which involves the conversion of a singlet excited state into two triplet excitons, holds great potential to boost the efficiency of photovoltaics. However, losses due to triplet-triplet annihilation hamper the efficient harvesting of SF-generated triplet excitons, which limits an effective implementation in solar energy conversion schemes. A fundamental understanding of the underlying structure-property relationships is thus crucial to define design principles for cutting-edge SF materials, yet it remains elusive. Herein, we harness helical supramolecular polymers decorated with pentacene side groups to elucidate intermolecular SF dynamics in solution and promote the formation of long-lived mobile triplets. By leveraging the hydrogen bonding-driven assembly of benzene-1,3,5-tricarboxamide (BTA) cores into one-dimensional scaffolds, we direct the organization of appended pentacene motifs into long-range ordered helical frameworks. Dynamic interactions between weakly coupled SF pendants mediate singlet conversion within hundreds of picoseconds, affording triplet quantum yields well above 100%. Moreover, analysis of triplet dynamics with a Monte Carlo simulation model reveals that triplet diffusion along the supramolecular fibers is favored over annihilation, resulting in independent triplets exhibiting considerably slow decay on the time scale of tens of microseconds. The molecular packing within the assembly is tuned by subtle changes in monomer design to increase the rate and efficiency of SF while ensuring exceptionally long-lived mobile triplets, allowing to maintain triplet quantum yields exceeding 100% for at least 100 ns. This work opens new opportunities to exploit self-assembled supramolecular polymers as functional templates to achieve long-lived SF-generated triplets.

3.
J Phys Condens Matter ; 37(3)2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39348871

RESUMO

Atomically thin group IV monochalcogenides or phosphorene analogues are a promising family of materials. Theoretical calculations predict that monolayers (MLs) should be semiconducting, ferroelectric and ferroelastic at room temperature, exhibit large charge mobilities and large non-linear optical response. Yet, experimental studies of these systems are scarce because of the difficulty to produce such MLs. Here we focus on two members of this family: GeSe and SnS. We demonstrate a simple mechanical exfoliation method to produce ML samples on gold substrates. We observe the evolution of the Raman scattering as a function of layers and the anisotropic optical response from reflectance contrast measurements. To the best of our knowledge this is the first report of mechanical exfoliation down to the ML of these materials and the first realisation of ML GeSe.

4.
Nat Commun ; 15(1): 8120, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285179

RESUMO

Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX3 nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX3, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI3). It is found that hot carriers are directly captured by traps, instead of going through an intermediate cold carrier, and deeper traps cause faster hot carrier cooling, reducing the effects of the hot phonon bottleneck and Auger reheating. This work provides important insights into how defects influence hot carriers, which will be important for designing materials for hot carrier solar cells, multiexciton generation, and optical gain media.

5.
Nat Chem ; 16(9): 1453-1461, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39164580

RESUMO

Control of the molecular configuration at the interface of an organic heterojunction is key to the development of efficient optoelectronic devices. Due to the difficulty in characterizing these buried and (probably) disordered heterointerfaces, the interfacial structure in most systems remains a mystery. Here we demonstrate a synthetic strategy to design and control model interfaces, enabling their detailed study in isolation from the bulk material. This is achieved by the synthesis of a polymer in which a non-fullerene acceptor moiety is covalently bonded to a donor polymer backbone using dual alkyl chain links, constraining the acceptor and donor units in a through space co-facial arrangement. The constrained geometry of the acceptor relative to the electron-rich and -poor moieties in the polymer backbone can be tuned to control the kinetics of charge separation and the energy of the resultant charge-transfer state giving insight into factors that govern charge generation at organic heterojunctions.

6.
Nature ; 633(8028): 83-89, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198653

RESUMO

Crystallographic phase engineering plays an important part in the precise control of the physical and electronic properties of materials. In two-dimensional transition metal dichalcogenides (2D TMDs), phase engineering using chemical lithiation with the organometallization agent n-butyllithium (n-BuLi), to convert the semiconducting 2H (trigonal) to the metallic 1T (octahedral) phase, has been widely explored for applications in areas such as transistors, catalysis and batteries1-15. Although this chemical phase engineering can be performed at ambient temperatures and pressures, the underlying mechanisms are poorly understood, and the use of n-BuLi raises notable safety concerns. Here we optically visualize the archetypical phase transition from the 2H to the 1T phase in mono- and bilayer 2D TMDs and discover that this reaction can be accelerated by up to six orders of magnitude using low-power illumination at 455 nm. We identify that the above-gap illumination improves the rate-limiting charge-transfer kinetics through a photoredox process. We use this method to achieve rapid and high-quality phase engineering of TMDs and demonstrate that this methodology can be harnessed to inscribe arbitrary phase patterns with diffraction-limited edge resolution into few-layer TMDs. Finally, we replace pyrophoric n-BuLi with safer polycyclic aromatic organolithiation agents and show that their performance exceeds that of n-BuLi as a phase transition agent. Our work opens opportunities for exploring the in situ characterization of electrochemical processes and paves the way for sustainably scaling up materials and devices by photoredox phase engineering.

7.
J Am Chem Soc ; 146(32): 22612-22621, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101932

RESUMO

Lanthanide-doped nanoparticles (LnNPs) possess unique optical properties and are employed in various optoelectronic and bioimaging applications. One fundamental limitation of LnNPs is their low absorption cross-section. This hurdle can be overcome through surface modification with organic chromophores with large absorption cross-sections. Controlling energy transfer from organic molecules to LnNPs is crucial for creating optically bright systems, yet the mechanisms are not well understood. Using pump-probe spectroscopy, we follow singlet energy transfer (SET) and triplet energy transfer (TET) in systems comprising different length 9,10-bis(phenylethynyl)anthracene (BPEA) derivatives coordinated onto ytterbium and neodymium-doped nanoparticles. Photoexcitation of the ligands forms singlet excitons, some of which convert to triplet excitons via intersystem crossing when coordinated to the LnNPs. The triplet generation rate and yield are strongly distance-dependent. Following their generation, TET occurs from the ligands to the LnNPs, exhibiting an exponential distance dependence, independent of solvent polarity, suggesting a concerted Dexter-type process with a damping coefficient of 0.60 Å-1. Nevertheless, TET occurs with near-unity efficiency for all BPEA derivatives due to the lack of other triplet deactivation pathways and long intrinsic triplet lifetimes. Thus, we find that close coupling is primarily important to ensure efficient triplet generation rather than efficient TET. Although SET is faster, we find its efficiency to be lower and more strongly distance-dependent than the TET efficiency. Our results present the first direct distance-dependent energy transfer measurements in LnNP@organic nanohybrids and establish the advantage of using the triplet manifold to achieve the most efficient energy transfer and best sensitization of LnNPs with π-conjugated ligands.

8.
Sci Adv ; 10(30): eado3476, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047089

RESUMO

Open-shell systems with extensive π-conjugation have fascinating properties due to their narrow bandgaps and spin interactions. In this work, we report neutral open-shell di- and polyradical conjugated materials exhibiting intriguing optical and magnetic properties. Our key design advance is the planarized geometry allowing for greater interaction between adjacent spins. This results in absorption and emission in the near infrared at 803 and 1050 nanometers, respectively, and we demonstrate a unique electronic structure where a bright zwitterionic excited state is the lowest-accessible electronic transition. Electron paramagnetic resonance spectroscopy and superconducting quantum interference device measurements reveal that our materials are open-shell singlets with different degrees of spin interactions, dynamics, and antiferromagnetic properties, which likely contributed to the formation of their emissive zwitterionic singlet excited state and near-infrared emission. In addition, our materials show reversible and stable electrochromic switching with more than 500 cycles, indicating their potential for optoelectronic and electrochemical energy storage applications.

9.
J Am Chem Soc ; 146(27): 18253-18261, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918896

RESUMO

Singlet fission in organic chromophores holds the potential for enhancing photovoltaic efficiencies beyond the single-junction limit. The most basic requirement of a singlet fission material is that it has a large energy gap between its first singlet and triplet excited states. Identifying such compounds is not simple and has been accomplished either through computational screening or by subtle modifications of previously known fission materials. Here, we propose an approach that leverages ground and excited-state aromaticity combined with double-bond conformation to establish simple qualitative design rules for predicting fundamental optical properties without the need for computational modeling. By investigating two Pechmann dye isomers, we demonstrate that although their planarity and degree of charge transfer are similar, singlet fission is active in the isomer with a trans-conformation, while the cis-isomer exhibits greater favorability for polaronic processes, experimentally validated using ultrafast and electron spin resonance spectroscopy. Our results offer a new design perspective that provides a rational framework for tailoring optoelectronic systems to specific applications such as singlet fission or triplet-triplet annihilation.

10.
Nat Commun ; 15(1): 3908, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724495

RESUMO

Photo(electro)catalysts use sunlight to drive chemical reactions such as water splitting. A major factor limiting photocatalyst development is physicochemical heterogeneity which leads to spatially dependent reactivity. To link structure and function in such systems, simultaneous probing of the electrochemical environment at microscopic length scales and a broad range of timescales (ns to s) is required. Here, we address this challenge by developing and applying in-situ (optical) microscopies to map and correlate local electrochemical activity, with hole lifetimes, oxygen vacancy concentrations and photoelectrode crystal structure. Using this multi-modal approach, we study prototypical hematite (α-Fe2O3) photoelectrodes. We demonstrate that regions of α-Fe2O3, adjacent to microstructural cracks have a better photoelectrochemical response and reduced back electron recombination due to an optimal oxygen vacancy concentration, with the film thickness and extended light exposure also influencing local activity. Our work highlights the importance of microscopic mapping to understand activity, in even seemingly homogeneous photoelectrodes.

11.
IDCases ; 36: e01982, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765801

RESUMO

Introduction: Coronaviruses have been suspected to be associated with neurological manifestations in patients with respiratory tract infections. Corona Virus disease (COVID-19) develop seizures as a consequence of hypoxia, metabolic derangements, organ failure, or even cerebral damage that may happen in people with COVID-19. There is scarce data about the development of seizures after recovery from acute COVID-19 illness, especially in those who have had a mild disease. Case: A thirty three year old male patient with recent history of mild COVID-19 disease, with no known comorbidities, no history of substance abuse, presented with history of transient loss of consciousness. On examination had no lateralising signs, tongue bite was present. Inflammatory markers were found to be raised. MRI brain showed no significant abnormality. EEG done showed bilateral intermittent slowing. Conclusion: Post COVID-19 infection, the post-infectious inflammatory response can give rise to many neurological complication, seizure being one among them, as noted in our patient.

12.
Nanoscale ; 16(20): 9728-9741, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38700268

RESUMO

The interest in obtaining high-quality monolayer transition metal dichalcogenides (TMDs) for optoelectronic device applications has been growing dramatically. However, the prevalence of defects and unwanted doping in these materials remain challenges, as they both limit optical properties and device performance. Surface chemical treatments of monolayer TMDs have been effective in improving their photoluminescence yield and charge transport properties. In this scenario, a systematic understanding of the underlying mechanism of chemical treatments will lead to a rational design of passivation strategies in future research, ultimately taking a step toward practical optoelectronic applications. We will therefore describe in this mini-review the strategies, progress, mechanisms, and prospects of chemical treatments to passivate and improve the optoelectronic properties of TMDs.

13.
Nature ; 629(8011): 355-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720042

RESUMO

The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.

14.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

15.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480865

RESUMO

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

16.
Cureus ; 16(1): e52725, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38384612

RESUMO

Background There has been an intense search for pharmacological agents that can complement corticosteroid therapy in the treatment of severe coronavirus disease 2019 (COVID-19). The Janus kinase inhibitor tofacitinib has shown promise in this regard. This study aimed to determine the impact of adding tofacitinib to standard care on the mortality and total duration of hospital stay in severe COVID-19. Methodology This retrospective study compared the mortality and total duration of hospital stay among patients admitted with severe COVID-19 to a designated COVID-19 hospital in south India who had received tofacitinib in addition to standard care versus standard care alone. Medical case records of severe COVID-19 patients were retrieved and screened for inclusion. Categorical variables such as mortality were expressed as proportions and compared using the chi-square test, while continuous variables such as total duration of hospital stay were compared via the independent t-test. The odds ratio (OR) was calculated for the mortality difference between the two groups. P-values ≤0.05 were considered significant. Results Following the initial screening of 250 medical records, 186 patients were included in the final analysis, of whom 103 had received tofacitinib and 83 had received standard care. There was no significant difference in mortality between the two groups (OR = 1.58 (95% confidence interval = 0.71 to 3.51); p = 0.26). The total duration of hospital stay was significantly longer among those in the tofacitinib group (17.14 ± 8.85 days vs. 14.04 ± 5.48 days; p = 0.01). Conclusions Tofacitinib did not improve the clinical outcomes when used to supplement corticosteroids in the treatment of severe COVID-19.

17.
ACS Nano ; 18(1): 264-271, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196169

RESUMO

In atomically thin transition-metal dichalcogenides (TMDCs), the environmental sensitivity of the strong Coulomb interaction offers promising approaches to create spatially varying potential landscapes in the same continuous material by tuning its dielectric environment. Thus, allowing for control of transport. However, a scalable and CMOS-compatible method for achieving this is required to harness these effects in practical applications. In addition, because of their ultrashort lifetime, observing the spatiotemporal dynamics of carriers in monolayer TMDCs, on the relevant time scale, is challenging. Here, we pattern and deposit a thin film of hafnium oxide (HfO2) via atomic layer deposition (ALD) on top of a monolayer of WSe2. This allows for the engineering of the dielectric environment of the monolayer and design of heterostructures with nanoscale spatial resolution via a highly scalable postsynthesis methodology. We then directly image the transport of photoexcitations in the monolayer with 50 fs time resolution and few-nanometer spatial precision, using a pump probe microscopy technique. We observe the unidirectional funneling of charge carriers, from the unpatterned to the patterned areas, over more than 50 nm in the first 20 ps with velocities of over 2 × 103 m/s at room temperature. These results demonstrate the possibilities offered by dielectric engineering via ALD patterning, allowing for arbitrary spatial patterns that define the potential landscape and allow for control of the transport of excitations in atomically thin materials. This work also shows the power of the transient absorption methodology to image the motion of photoexcited states in complex potential landscapes on ultrafast time scales.

18.
Small ; : e2310199, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063859

RESUMO

Solution-processable near-infrared (NIR) photodetectors are urgently needed for a wide range of next-generation electronics, including sensors, optical communications and bioimaging. However, it is rare to find photodetectors with >300 kHz cut-off frequencies, especially in the NIR region, and many of the emerging inorganic materials explored are comprised of toxic elements, such as lead. Herein, solution-processed AgBiS2 photodetectors with high cut-off frequencies under both white light (>1 MHz) and NIR (approaching 500 kHz) illumination are developed. These high cut-off frequencies are due to the short transit distances of charge-carriers in the ultrathin photoactive layer of AgBiS2 photodetectors, which arise from the strong light absorption of this material, such that film thicknesses well below 120 nm are sufficient to absorb >65% of NIR to visible light. It is also revealed that ion migration plays a critical role in the photo-response speed of these devices, and its detrimental effects can be mitigated by finely tuning the thickness of the photoactive layer, which is important for achieving low dark current densities as well. These outstanding characteristics enable the realization of air-stable, real-time heartbeat sensors based on NIR AgBiS2 photodetectors, which strongly motivates their future integration in high-throughput systems.

19.
Chem Sci ; 14(45): 13090-13094, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023493

RESUMO

In molecular dimers that undergo intramolecular singlet fission (iSF), efficient iSF is typically accompanied by triplet pair annihilation at rates which prohibit effective triplet harvesting. Collisional triplet pair separation and intramolecular separation by hopping to additional sites in extended oligomers are both strategies that have been reported to be effective for acene based iSF materials in the literature. Herein, a family of highly soluble diphenylhexatriene (DPH) oligomers were synthesized and investigated using transient absorption spectroscopy to determine whether these approaches can be applied to the non-acene singlet fission chromophore, DPH. While iSF proceeds rapidly for all three new materials, neither concentration nor oligomer size result in significantly enhanced triplet pair lifetime relative to the dilute dimer case. These null results indicate the fallibility of the collisional separation and oligomerisation strategies.

20.
BMJ Case Rep ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788914

RESUMO

Transient reactive phlebitis (TRP) is a rare adverse event seen with intravenous infusion of medications. It is characterised by the appearance of erythematous cord-like lesions along the superficial veins proximal to the site of infusion. It is rarely seen with drugs such as morphine, rocuronium, eptifibatide, propofol and vancomycin. The exact pathogenesis is not clear; however, certain proposed mechanisms are due to the direct activation of C-nociceptors, activation of the kallikrein-kinin system with bradykinin release, local mediator release or histamine release. Here, we report a case of TRP due to ciprofloxacin infusion.


Assuntos
Flebite , Propofol , Humanos , Flebite/induzido quimicamente , Bradicinina , Veias , Infusões Intravenosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA