Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging Cell ; 11(3): 542-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22404871

RESUMO

Accumulating evidence suggests that adult hippocampal neurogenesis relies on the controlled and continued proliferation of neural progenitor cells (NPCs). With age, neurogenesis decreases through mechanisms that remain unclear but are believed to involve changes in the NPC microenvironment. Here, we provide evidence that NPC proliferation in the adult brain is in part regulated by astrocytes via Wnt signaling and that this cellular cross-talk is modified in the aging brain, leading to decreased proliferation of NPCs. Furthermore, we show that astrocytes regulate the NPC cell cycle by acting on the expression levels of survivin, a known mitotic regulator. Among cell cycle genes found down-regulated in aged NPCs, survivin was the only one that restored NPC proliferation in the aged brain. Our results provide a mechanism for the gradual loss of neurogenesis in the brain associated with aging and suggest that targeted modulation of survivin expression directly or through Wnt signaling could be used to stimulate adult neurogenesis.


Assuntos
Hipocampo/citologia , Proteínas Inibidoras de Apoptose/metabolismo , Células-Tronco Neurais/citologia , Proteínas Repressoras/metabolismo , Proteínas Wnt/metabolismo , Envelhecimento/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Hipocampo/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Survivina , Via de Sinalização Wnt
2.
J Neurosci ; 31(42): 15173-87, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22016551

RESUMO

Astrocytes are both detrimental and beneficial for repair and recovery after spinal cord injury (SCI). These dynamic cells are primary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can form growth-supportive bridges on which axons traverse. We have shown that intrathecal administration of transforming growth factor α (TGFα) to the contused mouse spinal cord can enhance astrocyte infiltration and axonal growth within the injury site, but the mechanisms of these effects are not well understood. The present studies demonstrate that the epidermal growth factor receptor (EGFR) is upregulated primarily by astrocytes and glial progenitors early after SCI. TGFα directly activates the EGFR on these cells in vitro, inducing their proliferation, migration, and transformation to a phenotype that supports robust neurite outgrowth. Overexpression of TGFα in vivo by intraparenchymal adeno-associated virus injection adjacent to the injury site enhances cell proliferation, alters astrocyte distribution, and facilitates increased axonal penetration at the rostral lesion border. To determine whether endogenous EGFR activation is required after injury, SCI was also performed on Velvet (C57BL/6J-Egfr(Vel)/J) mice, a mutant strain with defective EGFR activity. The affected mice exhibited malformed glial borders, larger lesions, and impaired recovery of function, indicating that intrinsic EGFR activation is necessary for neuroprotection and normal glial scar formation after SCI. By further stimulating precursor proliferation and modifying glial activation to promote a growth-permissive environment, controlled stimulation of EGFR at the lesion border may be considered in the context of future strategies to enhance endogenous cellular repair after injury.


Assuntos
Astrócitos/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Fenótipo , Traumatismos da Medula Espinal/patologia , Fator de Crescimento Transformador alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Análise de Variância , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Bromodesoxiuridina/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Receptores ErbB/deficiência , Receptores ErbB/metabolismo , Feminino , Gânglios Espinais/citologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Laminas/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética , Medula Espinal/citologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Transfecção/métodos , Fator de Crescimento Transformador alfa/genética , Regulação para Cima/genética
3.
Nat Biotechnol ; 29(9): 824-8, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832997

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non-cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Biomarcadores , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Mutação , Análise de Sequência de DNA , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
4.
Mol Ther ; 19(10): 1905-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21772256

RESUMO

Stem cell-derived motor neurons (MNs) are increasingly utilized for modeling disease in vitro and for developing cellular replacement strategies for spinal cord injury and diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Human embryonic stem cell (hESC) differentiation into MNs, which involves retinoic acid (RA) and activation of the sonic hedgehog (SHH) pathway is inefficient and requires up to 60 days to develop MNs with electrophysiological properties. This prolonged differentiation process has hampered the use of hESCs, in particular for high-throughput screening. We evaluated the MN gene expression profile of RA/SHH-differentiated hESCs to identify rate-limiting factors involved in MN development. Based on this analysis, we developed an adenoviral gene delivery system encoding for MN inducing transcription factors: neurogenin 2 (Ngn2), islet-1 (Isl-1), and LIM/homeobox protein 3 (Lhx3). Strikingly, delivery of these factors induced functional MNs with mature electrophysiological properties, 11-days after gene delivery, with >60-70% efficiency from hESCs and human induced pluripotent stem cells (hiPSCs). This directed programming approach significantly reduces the time required to generate electrophysiologically-active MNs by approximately 30 days in comparison to conventional differentiation techniques. Our results further exemplify the potential to use transcriptional coding for rapid and efficient production of defined cell types from hESCs and hiPSCs.


Assuntos
Neurônios Motores/citologia , Células-Tronco Pluripotentes/patologia , Fatores de Transcrição/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Humanos , Neurônios Motores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
5.
Mol Ther ; 18(12): 2075-84, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20859261

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron cell death in the cortex, brainstem, and spinal cord. Extensive efforts have been made to develop trophic factor-based therapies to enhance motor neuron survival; however, achievement of adequate therapeutic delivery to all regions of the corticospinal tract has remained a significant challenge. Here, we show that adeno-associated virus serotype 4 (AAV4)-mediated expression of insulin-like growth factor-1 (IGF-1) or vascular endothelial growth factor (VEGF)-165 in the cellular components of the ventricular system including the ependymal cell layer, choroid plexus [the primary cerebrospinal fluid (CSF)-producing cells of the central nervous system (CNS)] and spinal cord central canal leads to trophic factor delivery throughout the CNS, delayed motor decline and a significant extension of survival in SOD1(G93A) transgenic mice. Interestingly, when IGF-1- and VEGF-165-expressing AAV4 vectors were given in combination, no additional benefit in efficacy was observed suggesting that these trophic factors are acting on similar signaling pathways to modestly slow disease progression. Consistent with these findings, experiments conducted in a recently described in vitro cell culture model of ALS led to a similar result, with both IGF-1 and VEGF-165 providing significant motor neuron protection but in a nonadditive fashion. These findings support the continued investigation of trophic factor-based therapies that target the CNS as a potential treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Intervalo Livre de Doença , Células-Tronco Embrionárias , Feminino , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA