Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39287713

RESUMO

PURPOSE: In order to produce a surgical gesture recognition system that can support a wide variety of procedures, either a very large annotated dataset must be acquired, or fitted models must generalize to new labels (so-called zero-shot capability). In this paper we investigate the feasibility of latter option. METHODS: Leveraging the bridge-prompt framework, we prompt-tune a pre-trained vision-text model (CLIP) for gesture recognition in surgical videos. This can utilize extensive outside video data such as text, but also make use of label meta-data and weakly supervised contrastive losses. RESULTS: Our experiments show that prompt-based video encoder outperforms standard encoders in surgical gesture recognition tasks. Notably, it displays strong performance in zero-shot scenarios, where gestures/tasks that were not provided during the encoder training phase are included in the prediction phase. Additionally, we measure the benefit of inclusion text descriptions in the feature extractor training schema. CONCLUSION: Bridge-prompt and similar pre-trained + prompt-tuned video encoder models present significant visual representation for surgical robotics, especially in gesture recognition tasks. Given the diverse range of surgical tasks (gestures), the ability of these models to zero-shot transfer without the need for any task (gesture) specific retraining makes them invaluable.

2.
Genome Biol ; 25(1): 212, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123269

RESUMO

BACKGROUND: Spatial transcriptomics (ST) is advancing our understanding of complex tissues and organisms. However, building a robust clustering algorithm to define spatially coherent regions in a single tissue slice and aligning or integrating multiple tissue slices originating from diverse sources for essential downstream analyses remains challenging. Numerous clustering, alignment, and integration methods have been specifically designed for ST data by leveraging its spatial information. The absence of comprehensive benchmark studies complicates the selection of methods and future method development. RESULTS: In this study, we systematically benchmark a variety of state-of-the-art algorithms with a wide range of real and simulated datasets of varying sizes, technologies, species, and complexity. We analyze the strengths and weaknesses of each method using diverse quantitative and qualitative metrics and analyses, including eight metrics for spatial clustering accuracy and contiguity, uniform manifold approximation and projection visualization, layer-wise and spot-to-spot alignment accuracy, and 3D reconstruction, which are designed to assess method performance as well as data quality. The code used for evaluation is available on our GitHub. Additionally, we provide online notebook tutorials and documentation to facilitate the reproduction of all benchmarking results and to support the study of new methods and new datasets. CONCLUSIONS: Our analyses lead to comprehensive recommendations that cover multiple aspects, helping users to select optimal tools for their specific needs and guide future method development.


Assuntos
Algoritmos , Benchmarking , Análise por Conglomerados , Animais , Perfilação da Expressão Gênica/métodos , Transcriptoma , Humanos , Software , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA