Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592755

RESUMO

Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.

2.
Heliyon ; 10(8): e29233, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681631

RESUMO

Carpomya pardalina is known for its potential invasiveness, which poses a significant and alarming threat to Cucurbitaceae crops. It is considered a highly perilous pest species that requires immediate attention for quarantine and prevention. Due to the challenges in distinguishing pests of the Tephritidae family based on morphological characteristics, it is imperative to elucidate the mitochondrial genomic information of C. pardalina. In this study, the mitochondrial genome sequence of C. pardalina was determined and analyzed using next-generation sequencing. The results revealed that the mitogenome sequence had a total length of 16,257 bp, representing a typical circular molecule. It consisted of 13 PCGs, two rRNA genes, 22 tRNA genes and a non-coding region. The structure and organization of the mitochondrial genome of C. pardalina were found to be typical and similar to the published homologous sequences of other fruit flies in the Tephritidae family. Phylogenetic analysis confirmed that C. pardalina belongs to the Carpomya genus, which is consistent with traditional morphological taxonomy. Additionally, Carpomya and Rhagoletis were identified as sister groups. This study presents the first report of the complete mitochondrial genome of C. pardalina, which can serve as a valuable resource for future investigations in species diagnosis, evolutionary biology, prevention and control measures.

3.
Environ Sci Pollut Res Int ; 31(15): 22917-22924, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416351

RESUMO

Chloramphenicol, a broad-spectrum antibiotic employed for controlling bacterial infections, presents an intriguing aspect in terms of its environmental fate in soils. 14C-labeled chloramphenicol was used to explore its mineralization and residue characteristics in three distinct agricultural soils in China. The findings revealed a nuanced pattern in the fate of 14C-chloramphenicol, with notable variations among the different soils under investigation. The chloramphenicol extract residue exhibited a reduction of 18.04% in sandy clay soil, 23.04% in clay loam soil, and 21.73% in loamy clay soil. Notably, the mineralization rate in sandy clay soil was 25.22% surpassed that in the other two soils, particularly during the initial stages of incubation. Over time, the diminishing extract residue underwent conversion into minerals and bound residue. The formation rate of bound residue was increased from 44.59 to 53.65% after adding 10% manure, suggesting that chloramphenicol easily binds with soils rich in organic matter. The bound residue is predominantly localized in the humin fraction across all soils. Additionally, the sterilized soil experiments indicated the pivotal role of microorganisms in influencing the fate of chloramphenicol under the specified experimental conditions. In conclusion, this study offers valuable insights into the environmental dynamics of chloramphenicol in soils, emphasizing the importance of soil composition, organic matter content, and microbial activity. The findings contribute to a scientific understanding of the environmental safety implications associated with chloramphenicol usage.


Assuntos
Cloranfenicol , Solo , Solo/química , Radioisótopos de Carbono , Argila , Areia , Extratos Vegetais , Carbono
4.
Arch Insect Biochem Physiol ; 114(1): e22034, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37434515

RESUMO

The invasive whitefly (Bemisia tabaci) MED is one of the most economically damaging plant pests. The extensive use of insecticide over decades has led to that the invasive B. tabaci MED has developed resistance to a wide range of insecticide classes, but little is known about the genetic background associated with resistance. To this end, we conducted a comparative genome-wide analysis of single-base nucleotide polymorphisms between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line collected in 1976. First, low-coverage genome sequencings were conducted on DNA isolated from individual whiteflies. The sequencing results were evaluated using an available B. tabaci MED genome as a reference. Significant genetic differences were discovered between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line based on the principal component analyses. Top GO categories and KEGG pathways that might be involved in insecticide resistance development were identified, and several of them have not been previously associated with resistance. Additionally, we identified several genetic loci with novel variations including Cytochrome P450 monooxygenases (P450s), UDP-glucuronosyltransferases (UGTs), Glutathione S-transferases (GSTs), esterase, carboxyl-esterases (COE), ABC transporters, fatty acyl-CoA reductase, voltage-gated sodium channels, GABA receptor, and cuticle proteins (CPs) that were previously reported to have close associations with pesticide resistance in well-studied insect groups that provide an essential resource for the design of insecticide resistance-linked loci arrays insecticide. Our results was obtained solely on resequencing genome data sets, more pesticide bio-assays combined with omics datasets should be further used to verify the markers identified here.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides , Genômica , Hemípteros/metabolismo
5.
Front Neurol ; 14: 1068829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873430

RESUMO

Objective: The subdural evacuating port system (SEPS) is a minimally invasive approach that can be performed under local anesthesia for the treatment of chronic subdural hematoma (CSDH). Subdural thrombolysis has been described as an exhaustive drainage strategy and found to be safe and effective for improving drainage. We aim to analyze the effectiveness of SEPS with subdural thrombolysis in patients older than 80 years. Method: Consecutive patients aged ≥80 years old who presented with symptomatic CSDH and underwent SEPS followed by subdural thrombolysis between January 2014 and February 2021 were retrospectively studied. Outcome measures included complications, mortality, recurrence, and modified Rankin Scale (mRS) scores at discharge and 3 months. Results: In total, 52 patients with CSDH in 57 hemispheres were operated on, with a mean age of 83.9 ± 3.3 years, and 40 (76.9%) patients were men. The preexisting medical comorbidities were observed in 39 patients (75.0%). Postoperative complications occurred in nine patients (17.3%), with two having significant complications (3.8%). The complications observed included pneumonia (11.5%), acute epidural hematoma (3.8%), and ischemic stroke (3.8%). One patient experienced contralateral malignant middle cerebral artery infarction and died of subsequent severe herniation, contributing to a perioperative mortality rate of 1.9%. Discharge and 3 months of favorable outcomes (mRS score 0-3) were achieved in 86.5% and 92.3% of patients, respectively. CSDH recurrence was observed in five patients (9.6%), and repeat SEPS was performed. Conclusion: As an exhaustive drainage strategy, SEPS followed by thrombolysis is safe and effective with excellent outcomes among elderly patients. It is a technically easy and less invasive procedure with similar complications, mortality, and recurrence rates compared with burr-hole drainage in the literature.

6.
Carbohydr Polym ; 294: 119777, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868792

RESUMO

Aspidopterys obcordata vine is a Chinese Dai ethnic herb used to treat urolithiasis. However, the material basis and underlying mechanisms remain undefined. In this study, a 2.3 kD inulin-like A. obcordata fructan (AOFOS) was isolated by size exclusion column chromatography and characterized by ultrahigh-performance liquid chromatography-ion trap-time of flight mass spectrometry (UPLC-IT-TOF-MS), nuclear magnetic resonance (NMR) spectroscopy, gas chromatography mass spectrometry (GC-MS) and high-performance gel permeation chromatography (HGPC). In addition, AOFOS showed unique anti-urolithiasis activity in Drosophila kidney stone models. Mechanism study indicated that AOFOS reduced the size of calcium oxalate crystals by inhibiting the formation of large size crystals and the generation rate of calcium oxalate crystals as well as the crystal form conversion from calcium oxalate monohydrate (COM) to calcium oxalate dihydrate (COD).


Assuntos
Cálculos Renais , Malpighiaceae , Oxalato de Cálcio/química , Cristalização , Frutanos , Inulina , Cálculos Renais/química
7.
Insect Sci ; 29(2): 539-549, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34264019

RESUMO

Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap-feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex previously reported. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution.


Assuntos
Halomonadaceae , Hemípteros , Animais , Genômica , Hemípteros/microbiologia , Simbiose/genética , Transcriptoma
8.
Sci Total Environ ; 756: 143859, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33303200

RESUMO

Triazole fungicides are extensively applied in general agriculture for fungal control and have negative impacts on aquatic organisms. Prothioconazole, a widely used triazole fungicide, is toxic to zebrafish, but systematic research on the negative effects caused by prothioconazole in zebrafish embryos is limited. In this study, we studied the developmental toxicology, oxidative stress and apoptosis caused by prothioconazole in zebrafish embryos. Exposure to 0.850 mg/L prothioconazole impacts embryo survival and hatching. Prothioconazole exposure caused embryo malformation, especially yolk-sac and pericardial edemas, and prothioconazole-induced apoptosis was observed. Additionally, exposure to a high prothioconazole concentration up-regulated the expression levels of oxidative stress defense-related genes and p53. The bax to bcl2 ratio increased along with exposure time and prothioconazole concentration. Prothioconazole induced apoptosis during the early life stages of zebrafish and may trigger oxidative-stress and p53-dependent pathway responses. Our findings increase our understanding of the molecular mechanisms of oxidative stress and cell death caused by prothioconazole.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Apoptose , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Triazóis/metabolismo , Triazóis/toxicidade , Poluentes Químicos da Água/análise
9.
Insects ; 11(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114558

RESUMO

The use of a large number of chemical acaricides to control these pest mites has led to an increasing problem of pesticide resistance, which has always been the difficulty in integrated pest management (IPM). Fluazinam has a good control effect on Panonychus citri, the serious pest on citrus; however, we only know the mechanism of action of fluazinam as a fungicide and its mechanism of action on mites remains unclear. Through analysis using Illumina high-throughput transcriptomic sequencing and differential expression genes in P. citri treated with fluazinam, 59 cytochrome P450 genes, 23 glutathione s-transferase genes, five carboxylate esterase genes, 11 superoxide dismutase genes and 15 catalase genes were identified. The Gene Ontology enrichment and the enrichment of KEGG results showed that the treatment were enrichment for redox enzyme pathways. Evaluating the efficacy of fluazinam, and analyzing the transcriptome data of P. citri under fluazinam stress, potentially provide a new agent for prevention and control of P. citri, and also preliminary research results for exploring the mechanism of action of fluazinam on P. citri. Given the up-regulated expression levels of genes for Mn-superoxide dismutase and catalase, we speculate that they play an important role in fluazinam-stress action on P. citri.

10.
Environ Microbiol ; 22(4): 1207-1221, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997547

RESUMO

The bacterium Rickettsia is found widely in phytophagous insects and often exerts profound effects on the phenotype and fitness of its hosts. Here, we decrypt a new, independent, phylogenetically ancient Torix Rickettsia endosymbiont found constantly in a laboratory line of an economically important insect Asia II 7, a putative species of the Bemisia tabaci whitefly complex (Hemiptera: Aleyrodidae), and occasionally in field whitefly populations. This new Rickettsia distributes throughout the body of its whitefly host. Genetically, compared to Rickettsia_bellii_MEAM1 found earlier in whiteflies, the new Rickettsia species has more gene families and pathways, which may be important factors in shaping specific symbiotic relationships. We propose the name 'Candidatus Rickettsia_Torix_Bemisia_tabaci (RiTBt)' for this new endosymbiont associated with whiteflies. Comparative genomic analyses indicate that RiTBi may be a relatively recent intruder in whiteflies given its low abundance in the field and relatively larger genome compared to Rickettsia_bellii_MEAM1.


Assuntos
Hemípteros/microbiologia , Rickettsia/classificação , Simbiose , Animais , Ásia , Feminino , Masculino , Fenótipo , Filogenia , Rickettsia/genética , Rickettsia/isolamento & purificação , Rickettsia/fisiologia
11.
Front Physiol ; 10: 346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019468

RESUMO

Diverse herbivores are known to induce various plant defenses. The plant defenses may detrimentally affect the performance and preference to subsequent herbivores on the same plant, such as affecting another insect's feeding, settling, growth or oviposition. Here, we report two herbivores (mealybug Phenacoccus solenopsis and carmine spider mite Tetranychus cinnabarinus) which were used to pre-infest the cucumber to explore the impact on the plants and the later-colonizing species, whitefly Bemisia tabaci. The results showed that the whiteflies tended to select the treatments pre-infested by the mites, rather than the uninfected treatments. However, the result of treatments pre-infested by the mealybugs was opposite. Total number of eggs laid of whiteflies was related to their feeding preference. The results also showed that T. cinnabarinus were more likely to activate plant jasmonic acid (JA) regulated genes, while mealybugs were more likely to activate key genes regulated by salicylic acid (SA). The different plant defense activities on cucumbers may be one of the essential factors that affects the preference of B. tabaci. Moreover, the digestive enzymes and protective enzymes of the whitefly might play a substantial regulatory role in its settling and oviposition ability.

12.
Ecol Evol ; 9(4): 1972-1984, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847086

RESUMO

Associations between Sternorrhyncha insects and intracellular bacteria are common in nature. Mealybugs are destructive pests that seriously threaten the production of agriculture and forestry. Mealybugs have evolved intimate endosymbiotic relationships with bacteria, which provide them with essential amino acids, vitamins, and other nutrients. In this study, the divergence of five mealybugs was analyzed based up the sequences of the mitochondrial cytochrome oxidase I (mtCOI). Meanwhile, the distinct regions of the 16S rRNA gene of primary symbionts in the mealybugs were sequenced. Finally, high-throughput sequencing (HTS) techniques were used to study the microbial abundance and diversity in mealybugs. Molecular phylogenetic analyses revealed that these five mealybugs were subdivided into two different clusters. One cluster of mealybugs (Dysmicoccus neobrevipes, Pseudococcus comstocki, and Planococcus minor) harbored the primary endosymbiont "Candidatus Tremblaya princeps," and another cluster (Phenacoccus solenopsis and Phenacoccus solani) harbored "Ca. Tremblaya phenacola." The mtCOI sequence divergence between the two clusters was similar to the 16S rRNA sequence divergence between T. princeps and T. phenacola. Thus, we concluded that the symbiont phylogeny was largely concordant with the host phylogeny. The HTS showed that the microbial abundance and diversity within P. solani and P. solenopsis were highly similar, and there was lower overall species richness compared to the other mealybugs. Among the five mealybugs, we also found significant differences in Shannon diversity and observed species. These results provide a theoretical basis for further research on the coevolution of mealybugs and their symbiotic microorganisms. These findings are also useful for research on the effect of symbiont diversity on the pest status of mealybugs in agricultural systems.

13.
Ecotoxicol Environ Saf ; 164: 149-154, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30107324

RESUMO

As a new tetronic acid derivative insecticide, spirotetramat has been reported to be toxic to an array of aquatic organisms. However, the toxic effects of spirotetramat on zebrafish especially at ovary are still obscure. Hereby, the acute toxicity of spirotetramat towards zebrafish(Danio rerio),as well as the changes on biochemical and histological traits of ovary were investigated. The acute toxicity test results showed that the median lethal concentration (LC50) value of spirotetramat were 9.61 mg/L and 7.21 mg/L at 72 h and 96 h, respectively, suggesting spirotetramat has moderate toxicity to zebrafish. In the following sub-lethal toxicity test, the gene expression of superoxide dismutase (SOD), catalase (CAT), and gonadotropic hormone receptor (FSHR and LHR) together with the content of malondialdehyde (MDA) in ovary were measured at 14, 21, and 28 days after exposure to 36, 360 and 720 µg/L. Under high concentration treatment (360 and 720 µg/L), MDA content, the relative transcription CAT and SOD gene level increased significantly in ovary (p < 0.05). That indicated sub-lethal doses spirotetramat caused oxidative stress and lipid peroxidation in zebrafish ovary during the entire experimental period. Under the exposure to spirotetramat at 720 µg/L after 14 days, the relative transcript FSHR gene level was down regulated, and the relative transcript LHR gene level was up regulated. Moreover, spirotetramat affected the oocyte development especially on the diameter size and maturation during the ovary tissue biopsies at 28 days. Taken together, these findings revealed the adverse effects of spirotetramat on fish from the biochemical and histological aspects.


Assuntos
Compostos Aza/toxicidade , Furanos/toxicidade , Inseticidas/toxicidade , Ovário/efeitos dos fármacos , Compostos de Espiro/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Catalase/genética , Catalase/metabolismo , Feminino , Regulação da Expressão Gênica , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda
14.
Biomater Sci ; 5(9): 1845-1857, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28676873

RESUMO

Drug-eluting stents (DESs) can effectively control the harmful effects of coronary artery disease, because of their excellent ability to reduce in-stent restenosis. However, delayed re-endothelialization and late stent thrombosis have caused concern over the safety of DESs. In this study, according to time-ordered pathological responses after stent implantation, a hierarchical multiple drug-eluting stent was designed and prepared to overcome the existing DES limitations. A platelet membrane glycoprotein IIIa monoclonal antibody (SZ-21) and a vascular endothelial growth factor (VEGF121) were loaded into the inner coating of 316L stainless steel (316L SS) stents to inhibit thrombosis and promote re-endothelialization; rapamycin (RAPA) was loaded into the third layer to inhibit intima hyperplasia; a drug-free poly-l-lactic acid coating was located on the second and fourth layers and used as sustained release layers. The results showed that the three drugs exhibited sequential release kinetics without significant burst release. RAPA released quickly at the early stage, while SZ-21 and VEGF121 achieved a slow and prolonged release. In vitro experiments showed that the stents had excellent hemocompatibility and anti-inflammatory properties, and promoted the proliferation and migration of endothelial cells while inhibiting the proliferation and migration of smooth muscle cells. Finally the stents were implanted in the carotid arteries of New Zealand white rabbits. In vivo results showed that compared to 316L SS stents, the multiple drug-eluting stents could accelerate re-endothelialization and inhibit thrombosis, inflammation and in-stent restenosis after 4 weeks (12.79 ± 2.45% vs. 25.27 ± 4.81%) and 12 weeks (15.87 ± 3.62% vs. 58.84 ± 6.87%). These results indicate that the novel drug-eluting stent with multiple layer coatings will have a highly potential clinical application.


Assuntos
Desenho de Fármacos , Stents Farmacológicos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Stents Farmacológicos/efeitos adversos , Endotelina-1/metabolismo , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Teste de Materiais , Óxido Nítrico Sintase Tipo III/metabolismo , Adesividade Plaquetária/efeitos dos fármacos , Poliésteres/química , Coelhos , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Insect Sci ; 23(4): 531-42, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27273750

RESUMO

The whitefly, Bemisia tabaci, harbors the primary symbiont 'Candidatus Portiera aleyrodidarum' and a variety of secondary symbionts. Among these secondary symbionts, Rickettsia is the only one that can be detected both inside and outside the bacteriomes. Infection with Rickettsia has been reported to influence several aspects of the whitefly biology, such as fitness, sex ratio, virus transmission and resistance to pesticides. However, mechanisms underlying these differences remain unclear, largely due to the lack of genomic information of Rickettsia. In this study, we sequenced the genome of two Rickettsia strains isolated from the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex in China and Israel. Both Rickettsia genomes were of high coding density and AT-rich, containing more than 1000 coding sequences, much larger than that of the coexisted primary symbiont, Portiera. Moreover, the two Rickettsia strains isolated from China and Israel shared most of the genes with 100% identity and only nine genes showed sequence differences. The phylogenetic analysis using orthologs shared in the genus, inferred the proximity of Rickettsia in MEAM1 and Rickettsia bellii. Functional analysis revealed that Rickettsia was unable to synthesize amino acids required for complementing the whitefly nutrition. Besides, a type IV secretion system and a number of virulence-related genes were detected in the Rickettsia genome. The presence of virulence-related genes might benefit the symbiotic life of the bacteria, and hint on potential effects of Rickettsia on whiteflies. The genome sequences of Rickettsia provided a basis for further understanding the function of Rickettsia in whiteflies.


Assuntos
Genoma Bacteriano , Hemípteros/microbiologia , Rickettsia/genética , Animais , China , DNA Bacteriano/genética , Israel , Filogenia , Especificidade da Espécie , Simbiose , Virulência/genética
16.
BMC Plant Biol ; 15: 286, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26646110

RESUMO

BACKGROUND: Jumonji C (JmjC) domain-containing proteins are a group of functionally conserved histone lysine demethylases in Eukaryotes. Growing evidences have shown that JmjCs epigenetically regulate various biological processes in plants. However, their roles in plant biotic stress, especially in rice bacterial blight resistance have been barely studied so far. RESULTS: In this study, we found that the global di- and tri-methylation levels on multiple lysine sites of histone three were dramatically altered after being infected by bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Xoo infection induced the transcription of 15 JmjCs, suggesting these JmjCs are involved in rice bacterial blight defense. Further functional characterization of JmjC mutants revealed that JMJ704 is a positive regulator of rice bacterial blight resistance as the jmj704 became more susceptible to Xoo than the wild-type. In jmj704, the H3K4me2/3 levels were significantly increased; suggesting JMJ704 may be involved in H3K4me2/3 demethylation. Moreover, JMJ704 suppressed the transcription of the rice defense negative regulator genes, such as NRR, OsWRKY62 and Os-11N3, by reducing the activation marks H3K4me2/3 on them. CONCLUSIONS: JMJ704 may be a universal switch controlling multiple genes of the bacterial blight resistance pathway. JMJ704 positively regulates rice defense by epigenetically suppressing master negative defense regulators, presenting a novel mechanism distinct from its homolog JMJ705 which also positively regulates rice defense but via activating positive defense regulators.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Histonas/metabolismo , Lisina/metabolismo , Oryza/imunologia , Oryza/microbiologia , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Western Blotting , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Metilação , Mutação/genética , Oryza/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Tempo
17.
ACS Appl Mater Interfaces ; 7(22): 11695-712, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26011753

RESUMO

Drug-eluting stents (DES) have become more widely used by cardiologists than bare metal stents (BMS) because of their better ability to control restenosis. However, recognized negative events, particularly including delayed or incomplete endothelialization and late stent thrombosis, have caused concerns over the long-term safety of DES. Although stent-based drug delivery can facilitate a drug's release directly to the restenosis site, a burst of drug release can seriously affect the pharmacological action and is a major factor accounting for adverse effects. Therefore, the drug release rate has become an important criterion in evaluating DES. The factors affecting the drug release rate include the drug carrier, drug, coating methods, drug storage, elution direction, coating thickness, pore size in the coating, release conditions (release medium, pH value, temperature), and hemodynamics after the stent implantation. A better understanding of how these factors influence drug release is particularly important for the reasonable use of efficient control strategies for drug release. This review summarizes the factors influencing the drug release from DES and presents strategies for enhancing the control of the drug's release, including the stent design, the application of absorbable stents, the development of new polymers, and the application of nanocarriers and improvements in the coating technology. Therefore, this paper provides a reference for the preparation of novel controlled slow-release DES.


Assuntos
Reestenose Coronária/tratamento farmacológico , Stents Farmacológicos , Sirolimo/uso terapêutico , Reestenose Coronária/prevenção & controle , Sistemas de Liberação de Medicamentos/efeitos adversos , Humanos , Desenho de Prótese
18.
BMC Genomics ; 16: 226, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887812

RESUMO

BACKGROUND: The whitefly Bemisia tabaci is an important agricultural pest with global distribution. This phloem-sap feeder harbors a primary symbiont, "Candidatus Portiera aleyrodidarum", which compensates for the deficient nutritional composition of its food sources, and a variety of secondary symbionts. Interestingly, all of these secondary symbionts are found in co-localization with the primary symbiont within the same bacteriocytes, which should favor the evolution of strong interactions between symbionts. RESULTS: In this paper, we analyzed the genome sequences of the primary symbiont Portiera and of the secondary symbiont Hamiltonella in the B. tabaci Mediterranean (MED) species in order to gain insight into the metabolic role of each symbiont in the biology of their host. The genome sequences of the uncultured symbionts Portiera and Hamiltonella were obtained from one single bacteriocyte of MED B. tabaci. As already reported, the genome of Portiera is highly reduced (357 kb), but has kept a number of genes encoding most essential amino-acids and carotenoids. On the other hand, Portiera lacks almost all the genes involved in the synthesis of vitamins and cofactors. Moreover, some pathways are incomplete, notably those involved in the synthesis of some essential amino-acids. Interestingly, the genome of Hamiltonella revealed that this secondary symbiont can not only provide vitamins and cofactors, but also complete the missing steps of some of the pathways of Portiera. In addition, some critical amino-acid biosynthetic genes are missing in the two symbiotic genomes, but analysis of whitefly transcriptome suggests that the missing steps may be performed by the whitefly itself or its microbiota. CONCLUSIONS: These data suggest that Portiera and Hamiltonella are not only complementary but could also be mutually dependent to provide a full complement of nutrients to their host. Altogether, these results illustrate how functional redundancies can lead to gene losses in the genomes of the different symbiotic partners, reinforcing their inter-dependency.


Assuntos
Enterobacteriaceae/genética , Genoma Bacteriano , Halomonadaceae/genética , Hemípteros/genética , Hemípteros/microbiologia , Simbiose/genética , Aminoácidos/biossíntese , Animais , DNA/análise , DNA/isolamento & purificação , DNA/metabolismo , Hemípteros/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Vitaminas/biossíntese
19.
Genome Biol Evol ; 7(3): 839-55, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25714744

RESUMO

Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relationships in two clades of insects. In aphids, H. defensa is found in several species with an intermediate prevalence and confers protection against parasitoids. In whiteflies, H. defensa is almost fixed in some species of Bemisia tabaci, which suggests an important role of and a transition toward obligate symbiosis. In this study, comparisons of the genome of H. defensa present in two B. tabaci species (Middle East Asia Minor 1 and Mediterranean) and in the aphid Acyrthosiphon pisum revealed that they belong to two distinct clades and underwent specific gene losses. In aphids, it contains highly virulent factors that could allow protection and horizontal transfers. In whiteflies, the genome lost these factors and seems to have a limited ability to acquire genes. However it contains genes that could be involved in the production of essential nutrients, which is consistent with a primordial role for this symbiont. In conclusion, although both lineages of H. defensa have mutualistic interactions with their hosts, their genomes follow distinct evolutionary trajectories that reflect their phenotype and could have important consequences on their evolvability.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/genética , Evolução Molecular , Deleção de Genes , Hemípteros/microbiologia , Simbiose , Animais , Parede Celular/química , Enterobacteriaceae/classificação , Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Genoma Bacteriano , Genômica , Filogenia , Fatores de Virulência/genética
20.
Wei Sheng Wu Xue Bao ; 54(7): 728-36, 2014 Jul 04.
Artigo em Chinês | MEDLINE | ID: mdl-25252453

RESUMO

In nature, many insects, especially sap-feeding insects, harbor nutritional bacterial symbionts, which are called obligate endosymbionts. These bacteria co-evolved with their hosts for millions of years. Obligate endosymbionts are commonly found in specialized organs, named bacteriomes or mycetomes that consist of a number of insect's cells (bacteriocytes or mycetocytes). Obligate endosymbionts strictly maternally inherited, providing essential amino acids to the hosts, and relating to survival, reproduction and evolution of the insects. Because of enriched nutritional environment, compared to those free-living bacteria, the genomes of obligate endosymbionts have different characteristics, such as genome size, GC content, and gene deletion. Although the genomes of many insect endosymbionts have been carefully analysis, the gene functions of endosymbionts and the interactions between endosymbionts/hosts and endosymbionts remain unknown. Thus, to provide an insight into the co-evolution of endosymbionts and their hosts, further studies of endosymbionts at genetic level are required.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Genoma Bacteriano , Insetos/microbiologia , Simbiose , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Insetos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA