Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt A): 512-520, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39106776

RESUMO

Aerogel-based conductive materials have emerged as a major candidate for piezoresistive pressure sensors due to their excellent mechanical and electrical performance besides light-weighted and low-cost characteristics, showing great potential for applications in electronic skins, biomedicine, robot controlling and intelligent recognition. However, it remains a grand challenge for these piezoresistive sensors to achieve a high sensitivity across a wide working temperature range. Herein, we report a highly flexible and ultra-light composite aerogel consisting of aramid nanofibers (ANFs) and reduced graphene oxide flakes (rGOFs) for application as a high-performance pressure sensing material in a wide temperature range. By controlling the orientations of pores in the composite framework, the aerogel promotes pressure transfer by aligning its conductive channels. As a result, the ANFs/rGOFs aerogel-based piezoresistive sensor exhibits a high sensitivity of up to 7.10 kPa-1, an excellent stability over 12,000 cycles, and an ultra-wide working temperature range from -196 to 200 °C. It is anticipated that the ANFs/rGOFs composite aerogel can be used as reliable sensing materials in extreme environments.

2.
Langmuir ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116384

RESUMO

Solar steam generation (SSG) is a promising technique that may find applications in seawater desalination, sewage treatment, etc. The core component for SSG devices is photothermal materials, among which biomass-derived carbon materials have been extensively attempted due to their low cost, wide availability, and diversified microstructures. However, the practical performance of these materials is not satisfactory because of the multifaceted structural requirements for photothermal materials in SSG scenarios. In this work, cactus stems, which possess abundant and multiscaled pores for simultaneous sunlight gathering and water evaporation, are applied as the photothermal structure for SSG devices after mild heat treatment. Consequently, the SSG device based on the carbonized cactus stems delivers high performance (an absorption rate of 93.7% of the solar spectrum, an evaporation rate of 2.02 kg m-2 h-1, and an efficiency of 91.4% under one solar irradiation). We anticipate that the material can be a potential candidate for efficient SSG devices and may shed light on the sustainable supply of water.

3.
Small ; 17(39): e2103301, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34473395

RESUMO

The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).

4.
Nano Lett ; 20(11): 8112-8119, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33044079

RESUMO

Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.

5.
Nat Mater ; 19(6): 605-609, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32313265

RESUMO

Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1-3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA