Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Front Immunol ; 14: 1188818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342332

RESUMO

Background: CART therapy has produced a paradigm shift in the treatment of relapsing FL patients. Strategies to optimize disease surveillance after these therapies are increasingly necessary. This study explores the potential value of ctDNA monitoring with an innovative signature of personalized trackable mutations. Method: Eleven FL patients treated with anti-CD19 CAR T-cell therapy were included. One did not respond and was excluded. Genomic profiling was performed before starting lymphodepleting chemotherapy to identify somatic mutations suitable for LiqBio-MRD monitoring. The dynamics of the baseline mutations (4.5 per patient) were further analyzed on 59 cfDNA follow-up samples. PET/CT examinations were performed on days +90, +180, +365, and every six months until disease progression or death. Results: After a median follow-up of 36 months, all patients achieved a CR as the best response. Two patients progressed. The most frequently mutated genes were CREBBP, KMT2D and EP300. Simultaneous analysis of ctDNA and PET/CT was available for 18 time-points. When PET/CT was positive, two out of four ctDNA samples were LiqBio-MRD negative. These two negative samples corresponded to women with a unique mesenteric mass in two evaluations and never relapsed. Meanwhile, 14 PET/CT negative images were mutation-free based on our LiqBio-MRD analysis (100%). None of the patients had a negative LiqBio-MRD test by day +7. Interestingly, all durably responding patients had undetectable ctDNA at or around three months after infusion. Two patients presented discordant results by PET/CT and ctDNA levels. No progression was confirmed in these cases. All the progressing patients were LiqBio-MRD positive before progression. Conclusion: This is a proof-of-principle for using ctDNA to monitor response to CAR T-cell therapy in FL. Our results confirm that a non-invasive liquid biopsy MRD analysis may correlate with response and could be used to monitor response. Harmonized definitions of ctDNA molecular response and pinpointing the optimal timing for assessing ctDNA responses are necessary for this setting. If using ctDNA analysis, we suggest restricting follow-up PET/CT in CR patients to a clinical suspicion of relapse, to avoid false-positive results.


Assuntos
DNA Tumoral Circulante , Linfoma Folicular , Receptores de Antígenos Quiméricos , Humanos , Feminino , DNA Tumoral Circulante/genética , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Recidiva Local de Neoplasia , Terapia Baseada em Transplante de Células e Tecidos
3.
Front Oncol ; 13: 1199023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274292

RESUMO

Objectives: The IPSS-M is a recently published score for risk stratification in myelodysplastic syndromes (MDS), based on clinical and molecular data. We aimed to evaluate its relevance on treatment choice in a real-life setting. Methods: We retrospectively collected clinical, cytogenetic and molecular data from 166 MDS patients. We calculated IPSS-R and IPSS-M scores and compared Overall Survival (OS) and Leukemia Free Survival (LFS). We also analyzed which patients would have been affected by the re-stratification in terms of clinical management. Results: We found that 86.1% of the patients had at least one genetic alteration. The most frequent mutated genes were SF3B1 (25.9%), DNMT3A (16.8%) and ASXL1 (14.4%). IPSS-M re-stratified 48.2% of the patients, of which 16.9% were downgraded and 31.3% were upgraded. IPSS-M improved outcome prediction, with a Harrell's c-index of 0.680 vs 0.626 for OS and 0.801 vs 0.757 for LFS. In 22.2% of the cohort, the reclassification of the IPSS-M could potentially affect clinical management; 17.4% of the patients would be eligible for treatment intensification and 4.8% for treatment reduction. Conclusions: IPSS-M implementation in clinical practice could imply different treatment approaches in a significant number of patients. Our work validates IPSS-M in an external cohort and confirms its applicability in a real-life setting.

5.
Leukemia ; 37(3): 659-669, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596983

RESUMO

In the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10-4 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients. Positive LiqBio-MRD at first-line therapy correlated with a higher risk of progression both at the interim evaluation (HRINT 11.0, 95% CI 2.10-57.7, p = 0.005) and at the end of treatment (HREOT, HR 19.1, 95% CI 4.10-89.4, p < 0.001). Similar results were observed by PET/CT Deauville score, with a median PFS of 19 months vs. NR (p < 0.001) at the interim and 13 months vs. NR (p < 0.001) at EOT. LiqBio-MRD and PET/CT combined identified the patients that progressed in less than two years with 88% sensitivity and 100% specificity. Our results demonstrate that LiqBio-MRD is a robust and non-invasive approach, complementary to metabolic imaging, for identifying FL patients at high risk of failure during the treatment and should be considered in future response-adapted clinical trials.


Assuntos
Linfoma Folicular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Linfoma Folicular/patologia , Biomarcadores , Biópsia Líquida , Sequenciamento de Nucleotídeos em Larga Escala
6.
Cancers (Basel) ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36672481

RESUMO

For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM.

7.
Leukemia ; 37(2): 339-347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566271

RESUMO

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico , Fator 88 de Diferenciação Mieloide/genética , Mutação , Fenótipo
9.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497281

RESUMO

FLT3−ITD results in a poor prognosis in terms of overall survival (OS) and relapse-free survival (RFS) in acute myeloid leukemia (AML). However, the prognostic usefulness of the allelic ratio (AR) to select post-remission therapy remains controversial. Our study focuses on the prognostic impact of FLT3−ITD and its ratio in a series of 2901 adult patients treated intensively in the pre-FLT3 inhibitor era and reported in the PETHEMA registry. A total of 579 of these patients (20%) harbored FLT3−ITD mutations. In multivariate analyses, patients with an FLT3−ITD allele ratio (AR) of >0.5 showed a lower complete remission (CR rate) and OS (HR 1.47, p = 0.009), while AR > 0.8 was associated with poorer RFS (HR 2.1; p < 0.001). Among NPM1/FLT3−ITD-mutated patients, median OS gradually decreased according to FLT3−ITD status and ratio (34.3 months FLT3−ITD-negative, 25.3 months up to 0.25, 14.5 months up to 0.5, and 10 months ≥ 0.5, p < 0.001). Post-remission allogeneic transplant (allo-HSCT) resulted in better OS and RFS as compared to auto-HSCT in NPM1/FLT3−ITD-mutated AML regardless of pre-established AR cutoff (≤0.5 vs. >0.5). Using the maximally selected log-rank statistics, we established an optimal cutoff of FLT3−ITD AR of 0.44 for OS, and 0.8 for RFS. We analyzed the OS and RFS according to FLT3−ITD status in all patients, and we found that the group of FLT3−ITD-positive patients with AR < 0.44 had similar 5-year OS after allo-HSCT or auto-HSCT (52% and 41%, respectively, p = 0.86), but worse RFS after auto-HSCT (p = 0.01). Among patients with FLT3−ITD AR > 0.44, allo-HSCT was superior to auto-HSCT in terms of OS and RFS. This study provides more evidence for a better characterization of patients with AML harboring FLT3−ITD mutations.

10.
Leukemia ; 36(7): 1834-1842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35614319

RESUMO

Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1IS and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Padrões de Referência , Resultado do Tratamento
12.
Front Oncol ; 11: 744112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804931

RESUMO

BACKGROUND: The SOLTI-1301 AGATA study aimed to assess the feasibility of a multi-institutional molecular screening program to better characterize the genomic landscape of advanced breast cancer (ABC) and to facilitate patient access to matched-targeted therapies in Spain. METHODS: DNA sequencing of 74 cancer-related genes was performed using FFPE tumor samples in three different laboratories with three different gene panels. A multidisciplinary advisory board prospectively recommended potential targeted treatments. The primary objective was to determine the success of matching somatic DNA alteration to an experimental drug/drug class. RESULTS: Between September 2014 and July 2017, 305 patients with ABC from 10 institutions were enrolled. Tumor sequencing was successful in 260 (85.3%) patients. Median age was 54 (29-80); most tumors were hormone receptor-positive/HER2-negative (74%), followed by triple-negative (14.5%) and HER2-positive (11.5%). Ninety-seven (37%) tumor samples analyzed proceeded from metastatic sites. Somatic mutations were identified in 163 (62.7%) patients, mostly in PIK3CA (34%), TP53 (22%), AKT1 (5%), ESR1 (3%), and ERBB2 (3%) genes. Significant enrichment of AKT1 mutation was observed in metastatic versus primary samples (9% vs. 2%; p=0.01). Genome-driven cancer therapy was recommended in 45% (n=116) of successfully screened patients, 11% (n=13) of whom finally received it. Among these patients, 46.2% had a PFS of ≥6 months on matched therapy. CONCLUSIONS: AGATA is the first nationwide molecular screening program carried out in Spain and we proved that implementing molecular data in the management of ABC is feasible. Although these results are promising, only 11% of the patients with genome-driven cancer therapy received it.

14.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070172

RESUMO

We sought to predict treatment responses and outcomes in older patients with newly diagnosed acute myeloid leukemia (AML) from our FLUGAZA phase III clinical trial (PETHEMA group) based on mutational status, comparing azacytidine (AZA) with fludarabine plus low-dose cytarabine (FLUGA). Mutational profiling using a custom 43-gene next-generation sequencing panel revealed differences in profiles between older and younger patients, and several prognostic markers that were useful in young patients were ineffective in older patients. We examined the associations between variables and overall responses at the end of the third cycle. Patients with mutated DNMT3A or EZH2 were shown to benefit from azacytidine in the treatment-adjusted subgroup analysis. An analysis of the associations with tumor burden using variant allele frequency (VAF) quantification showed that a higher overall response was associated with an increase in TET2 VAF (odds ratio (OR), 1.014; p = 0.030) and lower TP53 VAF (OR, 0.981; p = 0.003). In the treatment-adjusted multivariate survival analyses, only the NRAS (hazard ratio (HR), 1.9, p = 0.005) and TP53 (HR, 2.6, p = 9.8 × 10-7) variants were associated with shorter overall survival (OS), whereas only mutated BCOR (HR, 3.6, p = 0.0003) was associated with a shorter relapse-free survival (RFS). Subgroup analyses of OS according to biological and genomic characteristics showed that patients with low-intermediate cytogenetic risk (HR, 1.51, p = 0.045) and mutated NRAS (HR, 3.66, p = 0.047) benefited from azacytidine therapy. In the subgroup analyses, patients with mutated TP53 (HR, 4.71, p = 0.009) showed a better RFS in the azacytidine arm. In conclusion, differential mutational profiling might anticipate the outcomes of first-line treatment choices (AZA or FLUGA) in older patients with AML. The study is registered at ClinicalTrials.gov as NCT02319135.

15.
Cancer Immunol Immunother ; 70(10): 2911-2924, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33693963

RESUMO

The multiple myeloma (MM) landscape has changed in the last few years, but most patients eventually relapse because current treatment modalities do not target clonogenic stem cells, which are drug-resistant and can self-renew. We hypothesized that side population (SP) cells represent myeloma clonogenic stem cells and, searching for new treatment strategies, analyzed the anti-myeloma activity of natural killer (NK) cells against clonogenic cells. Activated and expanded NK cells (NKAE) products were obtained by co-culturing NK cells from MM patients with K562-mb15-41BBL cell line and characterized by flow cytometry. Functional experiments against MM cells were performed by Eu-TDA release assays and methylcellulose clonogenic assays. Side population was detected by Dye Cycle Violet labeling and then characterized by flow cytometry and RNA-Seq. Self-renewal capacity was tested by clonogenic assays. Sorting of both kind of cells was performed for time-lapse microscopy experiments. SP cells exhibited self-renewal potential and overexpressed genes involved in stem cell metabolism. NK cells from MM patients exhibited dysregulation and had lower anti-tumor potential against clonogenic cells than healthy donors' NK cells. Patients' NK cells were activated and expanded. These cells recovered cytotoxic activity and could specifically destroy clonogenic myeloma cells. They also had a highly cytotoxic phenotype expressing NKG2D receptor. Blocking NKG2D receptor decreased NK cell activity against clonogenic myeloma cells, and activated NK cells were able to destroy SP cells, which expressed NKG2D ligands. SP cells could represent the stem cell compartment in MM. This is the first report describing NK cell activity against myeloma clonogenic cells.


Assuntos
Linhagem Celular Tumoral/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/metabolismo , Células Tumorais Cultivadas/metabolismo , Humanos
16.
Haematologica ; 106(12): 3079-3089, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179471

RESUMO

Next-Generation Sequencing has recently been introduced to efficiently and simultaneously detect genetic variations in acute myeloid leukemia. However, its implementation in the clinical routine raises new challenges focused on the diversity of assays and variant reporting criteria. To overcome this challenge, the PETHEMA group established a nationwide network of reference laboratories aimed to deliver molecular results in the clinics. We report the technical cross-validation results for next-generation sequencing panel genes during the standardization process and the clinical validation in 823 samples of 751 patients with newly diagnosed or refractory/relapse acute myeloid leukemia. Two cross-validation rounds were performed in seven nationwide reference laboratories in order to reach a consensus regarding quality metrics criteria and variant reporting. In the pre-standardization cross-validation round, an overall concordance of 60.98% was obtained with a great variability in selected genes and conditions across laboratories. After consensus of relevant genes and optimization of quality parameters the overall concordance rose to 85.57% in the second cross-validation round. We show that a diagnostic network with harmonized next-generation sequencing analysis and reporting in seven experienced laboratories is feasible in the context of a scientific group. This cooperative nationwide strategy provides advanced molecular diagnostic for acute myeloid leukemia patients of the PETHEMA group.


Assuntos
Leucemia Mieloide Aguda , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Recidiva
17.
Haematologica ; 106(9): 2325-2333, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32732356

RESUMO

In cases of treatment failure in acute myeloid leukemia (AML), the utility of mutational profiling in primary refractoriness and relapse is not established. We undertook a perspective study using next-generation sequencing (NGS) of clinical follow-up samples (n=91) from 23 patients with AML with therapeutic failure to cytarabine plus idarubicin or fludarabine. Cases of primary refractoriness to treatment were associated with a lower number of DNA variants at diagnosis than cases of relapse (median 1.67 and 3.21, respectively, p=0.029). The most frequently affected pathways in patients with primary refractoriness were signaling, transcription and tumor suppression, whereas methylation and splicing pathways were mainly implicated in relapsed patients. New therapeutic targets, either by an approved drug or within clinical trials, were not identified in any of the cases of refractoriness (0/10); however, 8 potential new targets were found in 5 relapsed patients (5/13) (p=0.027): 1 IDH2, 3 SF3B1, 2 KRAS, 1 KIT and 1 JAK2. Sixty-five percent of all variants detected at diagnosis were not detected at complete response (CR). Specifically, 100% of variants in EZH2, RUNX1, VHL, FLT3, ETV6, U2AF1, PHF6 and SF3B1 disappeared at CR, indicating their potential use as markers to evaluate minimal residual disease (MRD) for follow-up of AML. Molecular follow-up using a custom NGS myeloid panel of 32 genes in the post-treatment evaluation of AML can help in the stratification of prognostic risk, the selection of MRD markers to monitor the response to treatment and guide post-remission strategies targeting AML, and the selection of new drugs for leukemia relapse.


Assuntos
Leucemia Mieloide Aguda , Preparações Farmacêuticas , Evolução Clonal/genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual , Prognóstico , Recidiva
18.
Genes (Basel) ; 11(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260630

RESUMO

B-cell precursor acute lymphoblastic leukaemia (B-ALL) is a malignancy of lymphoid progenitor cells with altered genes including the Janus kinase (JAK) gene family. Among them, tyrosine kinase 2 (TYK2) is involved in signal transduction of cytokines such as interferon (IFN) α/ß through IFN-α/ß receptor alpha chain (IFNAR1). To search for disease-associated TYK2 variants, bone marrow samples from 62 B-ALL patients at diagnosis were analysed by next-generation sequencing. TYK2 variants were found in 16 patients (25.8%): one patient had a novel mutation at the four-point-one, ezrin, radixin, moesin (FERM) domain (S431G) and two patients had the rare variants rs150601734 or rs55882956 (R425H or R832W). To functionally characterise them, they were generated by direct mutagenesis, cloned in expression vectors, and transfected in TYK2-deficient cells. Under high-IFNα doses, the three variants were competent to phosphorylate STAT1/2. While R425H and R832W induced STAT1/2-target genes measured by qPCR, S431G behaved as the kinase-dead form of the protein. None of these variants phosphorylated STAT3 in in vitro kinase assays. Molecular dynamics simulation showed that TYK2/IFNAR1 interaction is not affected by these variants. Finally, qPCR analysis revealed diminished expression of TYK2 in B-ALL patients at diagnosis compared to that in healthy donors, further stressing the tumour immune surveillance role of TYK2.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , TYK2 Quinase , Adolescente , Adulto , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , TYK2 Quinase/química , TYK2 Quinase/genética , TYK2 Quinase/metabolismo
19.
Sci Rep ; 10(1): 5904, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246042

RESUMO

Nearly 50% of patients with de novo acute myeloid leukemia (AML) harbor an apparently normal karyotype (NK) by conventional cytogenetic techniques showing a very heterogeneous prognosis. This could be related to the presence of cryptic cytogenetic abnormalities (CCA) not detectable by conventional methods. The study of copy number alterations (CNA) and loss of heterozygozity (LOH) in hematological malignancies is possible using a high resolution SNP-array. Recently, in clinical practice the karyotype study has been complemented with the identification of point mutations in an increasing number of genes. We analyzed 252 de novo NK-AML patients from Hospital La Fe (n = 44) and from previously reported cohorts (n = 208) to identify CCA by SNP-array, and to integrate the analysis of CCA with molecular alterations detected by Next-Generation-sequencing. CCA were detected in 58% of patients. In addition, 49% of them harbored CNA or LOH and point mutations, simultaneously. Patients were grouped in 3 sets by their abnormalities: patients carrying several CCA simultaneously, patients with mutations in FLT3, NPM1 and/or DNMT3A and patients with an amalgam of mutations. We found a negative correlation between the number of CCA and the outcome of the patients. This study outlines that CCA are present in up to 50% of NK-AML patients and have a negative impact on the outcome. CCA may contribute to the heterogeneous prognosis.


Assuntos
Aberrações Cromossômicas , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariótipo , Leucemia Mieloide Aguda/mortalidade , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Estudos Prospectivos , Adulto Jovem
20.
Br J Haematol ; 189(4): 672-683, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32068246

RESUMO

Refractoriness to induction therapy and relapse after complete remission are the leading causes of death in patients with acute myeloid leukaemia (AML). This study focussed on the prediction of response to standard induction therapy and outcome of patients with AML using a combined strategy of mutational profiling by next-generation sequencing (NGS, n = 190) and ex vivo PharmaFlow testing (n = 74) for the 10 most widely used drugs for AML induction therapy, in a cohort of adult patients uniformly treated according to Spanish PETHEMA guidelines. We identified an adverse mutational profile (EZH2, KMT2A, U2AF1 and/or TP53 mutations) that carries a greater risk of death [hazard ratio (HR): 3·29, P < 0·0001]. A high correlation was found between the ex vivo PharmaFlow results and clinical induction response (69%). Clinical correlation analysis showed that the pattern of multiresistance revealed by ex vivo PharmaFlow identified patients with a high risk of death (HR: 2·58). Patients with mutation status also ran a high risk (HR 4·19), and the risk was increased further in patients with both adverse profiles (HR 4·82). We have developed a new score based on NGS and ex vivo drug testing for AML patients that improves upon current prognostic risk stratification and allows clinicians to tailor treatments to minimise drug resistance.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA