Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Med Inform Assoc ; 30(3): 485-493, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36548217

RESUMO

OBJECTIVE: Enabling clinicians to formulate individualized clinical management strategies from the sea of molecular data remains a fundamentally important but daunting task. Here, we describe efforts towards a new paradigm in genomics-electronic health record (HER) integration, using a standardized suite of FHIR Genomics Operations that encapsulates the complexity of molecular data so that precision medicine solution developers can focus on building applications. MATERIALS AND METHODS: FHIR Genomics Operations essentially "wrap" a genomics data repository, presenting a uniform interface to applications. More importantly, operations encapsulate the complexity of data within a repository and normalize redundant data representations-particularly relevant in genomics, where a tremendous amount of raw data exists in often-complex non-FHIR formats. RESULTS: Fifteen FHIR Genomics Operations have been developed, designed to support a wide range of clinical scenarios, such as variant discovery; clinical trial matching; hereditary condition and pharmacogenomic screening; and variant reanalysis. Operations are being matured through the HL7 balloting process, connectathons, pilots, and the HL7 FHIR Accelerator program. DISCUSSION: Next-generation sequencing can identify thousands to millions of variants, whose clinical significance can change over time as our knowledge evolves. To manage such a large volume of dynamic and complex data, new models of genomics-EHR integration are needed. Qualitative observations to date suggest that freeing application developers from the need to understand the nuances of genomic data, and instead base applications on standardized APIs can not only accelerate integration but also dramatically expand the applications of Omic data in driving precision care at scale for all.


Assuntos
Registros Eletrônicos de Saúde , Genômica , Tempo , Nível Sete de Saúde
2.
BMC Bioinformatics ; 22(1): 104, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653260

RESUMO

BACKGROUND: VCF formatted files are the lingua franca of next-generation sequencing, whereas HL7 FHIR is emerging as a standard language for electronic health record interoperability. A growing number of FHIR-based clinical genomics applications are emerging. Here, we describe an open source utility for converting variants from VCF format into HL7 FHIR format. RESULTS: vcf2fhir converts VCF variants into a FHIR Genomics Diagnostic Report. Conversion translates each VCF row into a corresponding FHIR-formatted variant in the generated report. In scope are simple variants (SNVs, MNVs, Indels), along with zygosity and phase relationships, for autosomes, sex chromosomes, and mitochondrial DNA. Input parameters include VCF file and genome build ('GRCh37' or 'GRCh38'); and optionally a conversion region that indicates the region(s) to convert, a studied region that lists genomic regions studied by the lab, and a non-callable region that lists studied regions deemed uncallable by the lab. Conversion can be limited to a subset of VCF by supplying genomic coordinates of the conversion region(s). If studied and non-callable regions are also supplied, the output FHIR report will include 'region-studied' observations that detail which portions of the conversion region were studied, and of those studied regions, which portions were deemed uncallable. We illustrate the vcf2fhir utility via two case studies. The first, 'SMART Cancer Navigator', is a web application that offers clinical decision support by linking patient EHR information to cancerous gene variants. The second, 'Precision Genomics Integration Platform', intersects a patient's FHIR-formatted clinical and genomic data with knowledge bases in order to provide on-demand delivery of contextually relevant genomic findings and recommendations to the EHR. CONCLUSIONS: Experience to date shows that the vcf2fhir utility can be effectively woven into clinically useful genomic-EHR integration pipelines. Additional testing will be a critical step towards the clinical validation of this utility, enabling it to be integrated in a variety of real world data flow scenarios. For now, we propose the use of this utility primarily to accelerate FHIR Genomics understanding and to facilitate experimentation with further integration of genomics data into the EHR.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Genômica , Registros Eletrônicos de Saúde , Humanos , Bases de Conhecimento , Oncogenes
4.
AMIA Annu Symp Proc ; : 980, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14728484

RESUMO

We developed and studied a Website to promote breast cancer screening and allow women to access personalized risk and screening information. The site also provides a database of risk and screening information with multimedia enhancement, and direct interaction with experts and online communities. The site was studied to measure its effectiveness in motivating screening intentions and behaviors among a group of women subjects.


Assuntos
Neoplasias da Mama/diagnóstico , Educação em Saúde/métodos , Internet , Coleta de Dados , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Serviços de Informação , Avaliação de Programas e Projetos de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA