Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 14(5): 102202, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244157

RESUMO

Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Animais , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doença de Lyme/veterinária
2.
Ecol Evol ; 9(20): 11742-11751, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695884

RESUMO

Coastal resilience is threatened as storm-induced disturbances become more frequent and intense with anticipated changes in regional climate. After severe storms, rapid recovery of vegetation, especially that of dune-stabilizing plants, is a fundamental property of coastal resilience. Herbivores may affect resilience by foraging and trampling in disturbed areas. Consequently, assessing the impacts of herbivores on recovering vegetation is important for coastal land management.We combined imagery classification, wildlife monitoring, and trend analysis to investigate effects of white-tailed deer on recovery rates of vegetation four years poststorm in nine overwashed areas. We estimated local deer density with trail cameras, how it relates to an index of primary productivity, and assessed the relationship between deer density and rates of vegetation recovery in overwash fans.Prestorm vegetation cover consisted of shrubs and sporadic patches of beach grass. Poststorm cover was dominated by beach grass. At current rates, vegetation coverage will return to prestorm conditions within the decade, though community transition from grasses to shrubs will take much longer and will vary by site with dune formation.The effect of deer on rates of vegetation recovery was negative, but not statistically significant nor biologically compelling. Although effects of deer trampling on beach grass are evident in classified imagery, deer foraging on beach grass had little effect on its rate of spread throughout overwash fans.While the rate of spread of the primary dune-building grass was not deleteriously affected by deer, locally high deer densities will likely affect the future establishment and development of herbs and shrubs, which are generally more palatable to deer than beach grass.

3.
AoB Plants ; 11(5): plz059, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33014323

RESUMO

We documented the impacts of an abundant deer population on dune vegetation recovering from severe storm surge on a barrier island through use of permanent plots and a repeated measures analysis. Three years after landfall of the storm, vegetation cover was dominated by American beachgrass, Ammophila breviligulata, though we observed 12 plant species among plots surveyed. We documented significantly greater vegetation cover in fenced than unfenced plots in overwash fans in two consecutive years. The difference in species richness between fenced and unfenced plots was significant, though richness was consistently low (≤4 species per plot) and we did not detect a statistically significant difference between years. Both deer trampling and foraging effects were captured in this study, though separation between these effects was not possible. Because trampling effects are often exacerbated on sandy soils, trampling and foraging effects should be isolated and investigated in future assessments of deer impacts on coastal vegetation. Managing deer to lower abundance may enhance coastal resilience if vegetation is allowed to recover unimpeded by foraging and trampling, though a better understanding of the precise nature of deer impacts on dune vegetation is necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA