Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129435

RESUMO

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
2.
Bioorg Med Chem Lett ; 30(20): 127471, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781219

RESUMO

Ubiquitin specific protease-7 (USP7) is considered an attractive target for cancer therapy by promoting degradation of the tumor suppressor p53 and negatively affecting the immune response to tumors. However, the development of selective non-covalent USP7 inhibitors has proven challenging. In this work we report the NMR characterization of a weak binder from SPR screening of an in-house fragment library which reveals that it binds to the allosteric palm site of the catalytic domain. Molecular modeling combined with 1HNMR saturation transfer difference and NOESY experiments enabled structure-based design of additional compounds showing IC50 values in the low-micromolar range with good selectivity over the closest homolog USP47. The most potent analogue represents a promising starting point for the development of novel, selective USP7 inhibitors.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Peptidase 7 Específica de Ubiquitina/metabolismo
3.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537648

RESUMO

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Assuntos
Citocromos b/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Cristalografia por Raios X , Citocromos b/química , Citocromos b/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
4.
Structure ; 25(8): 1175-1186.e4, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28669631

RESUMO

Structures of the Mg2+ bound (closed) and apo (open) states of CorA suggests that channel gating is accomplished by rigid-body motions between symmetric and asymmetric assemblies of the cytosolic portions of the five subunits in response to ligand (Mg2+) binding/unbinding at interfacial sites. Here, we structurally and biochemically characterize the isolated cytosolic domain from Escherichia coli CorA. The data reveal an Mg2+-ligand binding site located in a novel position between each of the five subunits and two Mg2+ ions trapped inside the pore. Soaking experiments show that cobalt hexammine outcompetes Mg2+ at the pore site closest to the membrane. This represents the first structural information of how an analog of hexa-hydrated Mg2+ (and competitive inhibitor of CorA) associates to the CorA pore. Biochemical data on the isolated cytoplasmic domain and full-length protein suggests that gating of the CorA channel is governed cooperatively.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Ativação do Canal Iônico , Magnésio/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Domínios Proteicos
5.
J Mol Biol ; 426(11): 2246-54, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24690367

RESUMO

The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.


Assuntos
Antiporters/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Duplicação Gênica , Genes MDR , Sequência de Aminoácidos , Antiporters/química , Antiporters/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Biochemistry ; 52(28): 4842-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23781956

RESUMO

Members of the CorA/Mrs2/Alr1 superfamily of transport proteins mediate magnesium uptake in all kingdoms of life. Family members have a low degree of sequence conservation but are characterized by a conserved extracellular loop. While the degree of sequence conservation in the loop deviates to some extent between family members, the GMN family signature motif is always present. Structural and functional data imply that the loop plays a central role in magnesium selectivity, and recent biochemical data suggest it is crucial for stabilizing the pentamer in the magnesium-free (putative open) conformation. In this study, we present a detailed structure-function analysis of the extracellular loop of CorA from Thermotoga maritima, which provides molecular insight into how the loop mediates these two functions. The data show that loop residues outside of the GMN motif can be substituted if they support the pentameric state, but the residues of the GMN motif are intolerant to substitution. We conclude that G(312) is absolutely required for magnesium uptake, M(313) is absolutely required for pentamer integrity in the putative open conformation, and N(314) plays a role in both of these functions. These observations suggest a molecular reason why the GMN motif is conserved throughout the CorA/Mrs2/Alr1 superfamily.


Assuntos
Motivos de Aminoácidos , Proteínas de Transporte de Cátions/química , Sequência Conservada , Magnésio/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 287(33): 27547-55, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22722933

RESUMO

Crystal structures of the CorA Mg(2+) channel have suggested that metal binding in the cytoplasmic domain stabilizes the pentamer in a closed conformation. The open "metal free" state of the channel is, however, still structurally uncharacterized. Here, we have attempted to map conformational states of CorA from Thermotoga maritima by determining which residues support the pentameric structure in the presence or absence of Mg(2+). We find that when Mg(2+) is present, the pentamer is stabilized by the putative gating sites (M1/M2) in the cytoplasmic domain. Strikingly however, we find that the conserved and functionally important periplasmic loop is vital for the integrity of the pentamer when Mg(2+) is absent from the M1/M2 sites. Thus, although the periplasmic loops were largely disordered in the x-ray structures of the closed channel, our data suggests a prominent role for the loops in stabilizing the open conformation of the CorA channels.


Assuntos
Proteínas de Transporte de Cátions/química , Magnésio/química , Thermotoga maritima/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Transporte de Íons/fisiologia , Magnésio/metabolismo , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Thermotoga maritima/genética , Thermotoga maritima/imunologia
8.
Science ; 328(5986): 1698-700, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20508091

RESUMO

The mechanism by which multispanning helix-bundle membrane proteins are inserted into their target membrane remains unclear. In both prokaryotic and eukaryotic cells, membrane proteins are inserted cotranslationally into the lipid bilayer. Positively charged residues flanking the transmembrane helices are important topological determinants, but it is not known whether they act strictly locally, affecting only the nearest transmembrane helices, or can act globally, affecting the topology of the entire protein. Here we found that the topology of an Escherichia coli inner membrane protein with four or five transmembrane helices could be controlled by a single positively charged residue placed in different locations throughout the protein, including the very C terminus. This observation points to an unanticipated plasticity in membrane protein insertion mechanisms.


Assuntos
Antiporters/química , Membrana Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Antiporters/genética , Antiporters/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etídio/farmacologia , Bicamadas Lipídicas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
EMBO J ; 28(17): 2677-85, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19629046

RESUMO

G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe(2+) transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Proteínas de Ligação ao GTP/química , Guanosina Difosfato/metabolismo , Ferro/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Conformação Proteica , Transdução de Sinais
10.
Biochemistry ; 46(51): 15153-61, 2007 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-18052199

RESUMO

Topogenic sequences direct the membrane topology of proteins by being recognized and decoded by integral membrane translocases. In this paper, we have compared the minimal sequence characteristics of helical-hairpin, reverse signal-anchor, and stop-transfer sequences in bacterial membrane proteins that use either the YidC or SecYEG translocases for membrane insertion. We find that a stretch composed of 3 leucines and 16 alanines is required for efficient membrane-anchoring of the M13 procoat protein that inserts by a helical hairpin mechanism, and that a stretch composed of only 19 alanines has a detectable membrane-anchoring ability. Similar results were obtained for the reverse signal-anchor sequence of the single-spanning Pf3 coat protein and for stop-transfer segments engineered into leader peptidase. We have also determined the contribution to the apparent free energy of membrane insertion of M13 procoat for all 20 amino acids. The relative order of the contributions is similar to that determined for a stop-transfer sequence in the mammalian endoplasmic reticulum, but the absolute difference between the contributions for the most hydrophobic and most hydrophilic residues is somewhat larger in the E. coli system. These results are significant because they define the features of a membrane protein transmembrane segment that induce lateral release from the YidC and Sec translocases into the lipid bilayer in bacteria.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Canais de Translocação SEC , Proteínas SecA
11.
Mol Membr Biol ; 24(5-6): 329-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17710636

RESUMO

Membrane proteins are core components of many essential cellular processes, and high-resolution structural data is therefore highly sought after. However, owing to the many bottlenecks associated with membrane protein crystallization, progress has been slow. One major problem is our inability to obtain sufficient quantities of membrane proteins for crystallization trials. Traditionally, membrane proteins have been isolated from natural sources, or for prokaryotic proteins, expressed by recombinant techniques. We are however a long way away from a streamlined overproduction of eukaryotic proteins. With this technical limitation in mind, we have probed the question as to how far prokaryotic homologues can take us towards a structural understanding of the eukaryotic/human membrane proteome(s).


Assuntos
Proteínas de Membrana/química , Proteínas Recombinantes/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo
12.
Science ; 315(5816): 1282-4, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17255477

RESUMO

How do integral membrane proteins evolve in size and complexity? Using the small multidrug-resistance protein EmrE from Escherichia coli as a model, we experimentally demonstrated that the evolution of membrane proteins composed of two homologous but oppositely oriented domains can occur in a small number of steps: An original dual-topology protein evolves, through a gene-duplication event, to a heterodimer formed by two oppositely oriented monomers. This simple evolutionary pathway can explain the frequent occurrence of membrane proteins with an internal pseudo-two-fold symmetry axis in the plane of the membrane.


Assuntos
Antiporters/química , Membrana Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Evolução Molecular , Proteínas de Membrana Transportadoras/química , Sequência de Aminoácidos , Antiporters/genética , Dimerização , Evolução Molecular Direcionada , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Etídio/farmacologia , Duplicação Gênica , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
13.
Nat Struct Mol Biol ; 13(2): 112-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429150

RESUMO

Integral membrane proteins are generally believed to have unique membrane topologies. However, it has been suggested that dual-topology proteins that adopt a mixture of two opposite orientations in the membrane may exist. Here we show that the membrane orientations of five dual-topology candidates identified in Escherichia coli are highly sensitive to changes in the distribution of positively charged residues, that genes in families containing dual-topology candidates occur in genomes either as pairs or as singletons and that gene pairs encode two oppositely oriented proteins whereas singletons encode dual-topology candidates. Our results provide strong support for the existence of dual-topology proteins and shed new light on the evolution of membrane-protein topology and structure.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Evolução Molecular , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação/genética
14.
J Mol Biol ; 352(3): 489-94, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16120447

RESUMO

We have used 502 Escherichia coli inner membrane proteins with experimentally determined C-terminal locations (cytoplasmic or periplasmic) from a recently published data set, together with an additional 106 bacterial membrane proteins with known topology, as queries in BLAST searches against a data base of 658,210 bacterial open reading frames from GenBank. We find 51,208 homologs to the query sequences for which we can assign the location of the C terminus or an internal residue to the same side of the membrane as the query's C terminus. These assignments are then used as constraints for topology prediction. The 51,208 much improved topology models derived in this way cover approximately 30% of all predicted bacterial inner membrane proteins in 225 fully sequenced bacterial genomes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Algoritmos , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética , Bases de Dados Genéticas , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Modelos Moleculares , Fases de Leitura Aberta , Estrutura Secundária de Proteína
15.
Protein Sci ; 14(8): 2011-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15987891

RESUMO

We describe a generic, GFP-based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane-integral flavocytochrome. The approach is scalable and suitable for high-throughput applications. The GFP-based pipeline will facilitate the characterization of the E. coli membrane proteome and serves as an important reference for the characterization of other membrane proteomes.


Assuntos
Escherichia coli/genética , Proteínas de Fluorescência Verde/análise , Substâncias Luminescentes/análise , Proteínas de Membrana/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Fluorescência Verde/genética , Lactococcus lactis/genética , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação
16.
Science ; 308(5726): 1321-3, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15919996

RESUMO

The protein complement of cellular membranes is notoriously resistant to standard proteomic analysis and structural studies. As a result, membrane proteomes remain ill-defined. Here, we report a global topology analysis of the Escherichia coli inner membrane proteome. Using C-terminal tagging with the alkaline phosphatase and green fluorescent protein, we established the periplasmic or cytoplasmic locations of the C termini for 601 inner membrane proteins. By constraining a topology prediction algorithm with this data, we derived high-quality topology models for the 601 proteins, providing a firm foundation for future functional studies of this and other membrane proteomes. We also estimated the overexpression potential for 397 green fluorescent protein fusions; the results suggest that a large fraction of all inner membrane proteins can be produced in sufficient quantities for biochemical and structural work.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteínas de Membrana/análise , Proteoma , Fosfatase Alcalina/análise , Fosfatase Alcalina/genética , Clonagem Molecular , Biologia Computacional , Citoplasma/química , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Duplicação Gênica , Genes Bacterianos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Periplasma/química , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão
17.
Protein Sci ; 13(4): 937-45, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15044727

RESUMO

Membrane protein topology predictions can be markedly improved by the inclusion of even very limited experimental information. We have recently introduced an approach for the production of reliable topology models based on a combination of experimental determination of the location (cytoplasmic or periplasmic) of a protein's C terminus and topology prediction. Here, we show that determination of the location of a protein's C terminus, rather than some internal loop, is the best strategy for large-scale topology mapping studies. We further report experimentally based topology models for 31 Escherichia coli inner membrane proteins, using methodology suitable for genome-scale studies.


Assuntos
Membrana Celular/química , Quinases Ciclina-Dependentes/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Recombinantes de Fusão/química , Software , Fosfatase Alcalina , Membrana Celular/genética , Biologia Computacional , Quinases Ciclina-Dependentes/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA