RESUMO
Deterministic creation of multiple ferroelectric states with intermediate values of polarization remains challenging due to the inherent bi-stability of ferroelectric switching. Here we show the ability to select any desired intermediate polarization value via control of the switching pathway in (111)-oriented PbZr0.2Ti0.8O3 films. Such switching phenomena are driven by kinetic control of the volume fraction of two geometrically different domain structures which are generated by two distinct switching pathways: one direct, bipolar-like switching and another multi-step switching process with the formation of a thermodynamically-stable intermediate twinning structure. Such control of switching pathways is enabled by the competition between elastic and electrostatic energies which favors different types of ferroelastic switching that can occur. Overall, our work demonstrates an alternative approach that transcends the inherent bi-stability of ferroelectrics to create non-volatile, deterministic, and repeatedly obtainable multi-state polarization without compromising other important properties, and holds promise for non-volatile multi-state functional applications.
RESUMO
There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈10^{11} K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO_{3} occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO_{3} and BaTiO_{3}. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.
RESUMO
Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals.
RESUMO
We study a class of Dirac semimetals that feature an eightfold-degenerate double Dirac point. We show that 7 of the 230 space groups can host such Dirac points and argue that they all generically display linear dispersion. We introduce an explicit tight-binding model for space groups 130 and 135. Space group 135 can host an intrinsic double Dirac semimetal with no additional states at the Fermi energy. This defines a symmetry-protected topological critical point, and we show that a uniaxial compressive strain applied in different directions leads to topologically distinct insulating phases. In addition, the double Dirac semimetal can accommodate topological line defects that bind helical modes. Connections are made to theories of strongly interacting filling-enforced semimetals, and potential materials realizations are discussed.
RESUMO
We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, present ab initio calculations of ß-cristobalite BiO(2) which exhibits three Dirac points at the Fermi level. We find that ß-cristobalite BiO(2) is metastable, so it can be physically realized as a 3D analog to graphene.
RESUMO
According to recent experiments and predictions, the orientation of the polarization at the surface of a ferroelectric material can affect its surface chemistry. Here we demonstrate the converse effect: the chemical environment can control the polarization orientation in a ferroelectric film. In situ synchrotron x-ray scattering measurements show that high or low oxygen partial pressure induces outward or inward polarization, respectively, in an ultrathin PbTiO3 film. Ab initio calculations provide insight into surface structure changes observed during chemical switching.
RESUMO
The ability to manipulate dipole orientation in ferroelectric oxides holds promise as a method to tailor surface reactivity for specific applications. As ferroelectric domains can be patterned at the nanoscale, domain-specific surface chemistries may provide a method for fabrication of nanoscale devices. Although studies over the past 50 yr have suggested that ferroelectric domain orientation may affect the energetics of adsorption, definitive evidence is still lacking. Domain-dependent sticking coefficients are observed using temperature-programmed desorption and scanning surface potential microscopy, supported by first-principles calculations of the reaction coordinate. The first unambiguous observations of differences in the energetics of physisorption on ferroelectric domains are presented here for CH(3)OH and CO(2) on BaTiO(3) and Pb(Ti(0.52)Zr(0.48))O(3) surfaces.
RESUMO
Using in situ high-resolution synchrotron x-ray scattering, the Curie temperature TC has been determined for ultrathin c-axis epitaxial PbTiO3 films on conducting substrates (SrRuO3 on SrTiO3), with surfaces exposed to a controlled vapor environment. The suppression of TC was relatively small, even for the thinnest film (1.2 nm). We observe that 180 degrees stripe domains do not form, indicating that the depolarizing field is compensated by free charge at both interfaces. This is confirmed by ab initio calculations that find polar ground states in the presence of ionic adsorbates.
RESUMO
The first observation to the authors' knowledge of electromagnetic surface waves in a two-dimensional dielectric crystal is reported. By using the coherent microwave transient spectroscopy technique, surface waves are shown to exist at frequencies within the photonic band gap for certain lattice terminations. Energy at gigahertz frequencies is coupled into the surface mode using a prism coupling technique. The experimental results are in excellent agreement with theoretical predictions.