Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Microbiol Resour Announc ; : e0112823, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809010

RESUMO

Ten Clostridioides difficile isolates representing the top 10 ribotypes collected in 2016 through the Emerging Infections Program underwent long-read sequencing to obtain high-quality reference genome assemblies. These isolates are publicly available through the CDC & FDA Antibiotic Resistance Isolate Bank.

2.
mBio ; 15(2): e0286723, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38231533

RESUMO

Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g., siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Furthermore, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N = 16) or cKp (N = 33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression, the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49), respectively. These findings can be used to inform the identification of hvKp.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all five of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which, in turn, would assist in optimizing patient care.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Animais , Camundongos , Infecções por Klebsiella/epidemiologia , Biomarcadores , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sideróforos
3.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961280

RESUMO

Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance: Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.

4.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37987646

RESUMO

Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible Enterobacterales (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype-genotype correlation for the carbapenems and evaluated the presence of virulence genes in Klebsiella pneumoniae complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.


Assuntos
Antibacterianos , Gammaproteobacteria , Estados Unidos/epidemiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Mapeamento Cromossômico , Carbapenêmicos/farmacologia
5.
Microbiol Spectr ; 11(3): e0413422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37067448

RESUMO

Chlorhexidine bathing to prevent transmission of multidrug-resistant organisms has been adopted by many U.S. hospitals, but increasing chlorhexidine use has raised concerns about possible emergence of resistance. We sought to establish a broth microdilution method for determining chlorhexidine MICs and then used the method to evaluate chlorhexidine MICs for bacteria that can cause health care-associated infections. We adapted a broth microdilution method for determining chlorhexidine MICs, poured panels, established quality control ranges, and tested Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae complex isolates collected at three U.S. sites. Chlorhexidine MICs were determined for 535 isolates including 129 S. aureus, 156 E. coli, 142 K. pneumoniae, and 108 E. cloacae complex isolates. The respective MIC distributions for each species ranged from 1 to 8 mg/L (MIC50 = 2 mg/L and MIC90 = 4 mg/L), 1 to 64 mg/L (MIC50 = 2 mg/L and MIC90 = 4 mg/L), 4 to 64 mg/L (MIC50 = 16 mg/L and MIC90 = 32 mg/L), and 1 to >64 mg/L (MIC50 = 16 mg/L and MIC90 = 64 mg/L). We successfully adapted a broth microdilution procedure that several laboratories were able to use to determine the chlorhexidine MICs of bacterial isolates. This method could be used to investigate whether chlorhexidine MICs are increasing. IMPORTANCE Chlorhexidine bathing to prevent transmission of multidrug-resistant organisms and reduce health care-associated infections has been adopted by many hospitals. There is concern about the possible unintended consequences of using this agent widely. One possible unintended consequence is decreased susceptibility to chlorhexidine, but there are not readily available methods to perform this evaluation. We developed a method for chlorhexidine MIC testing that can be used to evaluate for possible unintended consequences.


Assuntos
Antibacterianos , Clorexidina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clorexidina/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
6.
Clin Infect Dis ; 76(5): 890-896, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36208202

RESUMO

BACKGROUND: Antimicrobial susceptibility testing (AST) is not routinely performed for Clostridioides difficile and data evaluating minimum inhibitory concentrations (MICs) are limited. We performed AST and whole genome sequencing (WGS) for 593 C. difficile isolates collected between 2012 and 2017 through the Centers for Disease Control and Prevention's Emerging Infections Program. METHODS: MICs to 6 antimicrobial agents (ceftriaxone, clindamycin, meropenem, metronidazole, moxifloxacin, and vancomycin) were determined using the reference agar dilution method according to Clinical and Laboratory Standards Institute guidelines. Whole genome sequencing was performed on all isolates to detect the presence of genes or mutations previously associated with resistance. RESULTS: Among all isolates, 98.5% displayed a vancomycin MIC ≤2 µg/mL and 97.3% displayed a metronidazole MIC ≤2 µg/mL. Ribotype 027 (RT027) isolates displayed higher vancomycin MICs (MIC50: 2 µg/mL; MIC90: 2 µg/mL) than non-RT027 isolates (MIC50: 0.5 µg/mL; MIC90: 1 µg/mL) (P < .01). No vanA/B genes were detected. RT027 isolates also showed higher MICs to clindamycin and moxifloxacin and were more likely to harbor associated resistance genes or mutations. CONCLUSIONS: Elevated MICs to antibiotics used for treatment of C. difficile infection were rare, and there was no increase in MICs over time. The lack of vanA/B genes or mutations consistently associated with elevated vancomycin MICs suggests there are multifactorial mechanisms of resistance. Ongoing surveillance of C. difficile using reference AST and WGS to monitor MIC trends and the presence of antibiotic resistance mechanisms is essential.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Estados Unidos/epidemiologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Metronidazol/uso terapêutico , Clindamicina/uso terapêutico , Moxifloxacina/uso terapêutico , Clostridioides/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica , Testes de Sensibilidade Microbiana , Ribotipagem
7.
J Clin Microbiol ; 60(9): e0021722, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35969171

RESUMO

The Bruker Biotyper matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) platform was assessed on its ability to accurately identify 314 nontuberculous mycobacteria (NTM) representing 73 species. All NTM isolates, representing 183 rapidly growing and 131 slowly growing organisms, were previously identified by Sanger DNA sequencing of the full-length 16S rRNA gene, and region V of the rpoB gene. An optimized version of the Bruker bead-beating procedure for protein extraction of NTM isolates was used to ensure high quality spectra for all NTM isolates, including less frequently encountered species. NTM spectra were analyzed using Bruker's research use only, Mycobacteria Library v6.0, supplemented by the MicrobeNet database. Identification of NTM by MALDI-TOF had an accuracy of 94% (296/314). The identification accuracy for rapidly growing mycobacteria was higher at 99% (182/183) than it was for slowly growing mycobacteria at 87% (114/131). While MALDI-TOF performed well against Sanger sequencing of the 16S rRNA gene alone, there were 11 species that required additional sequencing of rpoB. Most discrepancies between MALDI-TOF and sequencing results are likely due to underrepresentation of some species in the libraries used. Overall, the results of this study support Bruker's MALDI-TOF platform as an accurate and reliable method for the identification of NTM.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Micobactérias não Tuberculosas , Humanos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Microb Drug Resist ; 28(6): 645-653, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35639112

RESUMO

Healthcare-associated carbapenem-resistant Acinetobacter baumannii (CRAB) infections are a serious threat associated with global epidemic clones and a variety of carbapenemase gene classes. In this study, we describe the molecular epidemiology, including whole-genome sequencing analysis and antimicrobial susceptibility profiles of 92 selected, nonredundant CRAB collected through public health efforts in the United States from 2013 to 2017. Among the 92 isolates, the Oxford (OX) multilocus sequence typing scheme identified 30 sequence types (STs); the majority of isolates (n = 59, 64%) represented STs belonging to the international clonal complex 92 (CC92OX). Among these, ST208OX (n = 21) and ST281OX (n = 20) were the most common. All isolates carried an OXA-type carbapenemase gene, comprising 20 alleles. Ninety isolates (98%) encoded an intrinsic OXA-51-like enzyme; 67 (73%) harbored an additional acquired blaOXA gene, most commonly blaOXA-23 (n = 45; 49%). Compared with isolates harboring only intrinsic oxacillinase genes, acquired blaOXA gene presence was associated with higher prevalence of resistance and a higher median minimum inhibitory concentration to the carbapenem imipenem (64 µg/mL vs. 8 µg/mL), and antibiotics from other drug classes, including penicillin, aminoglycosides, cephalosporins, and polymyxins. These data illustrate the wide distribution of CC92OX and high prevalence of acquired blaOXA carbapenemase genes among CRAB in the United States.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecção Hospitalar/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Estados Unidos/epidemiologia , beta-Lactamases/genética
10.
Infect Control Hosp Epidemiol ; 43(11): 1586-1594, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35156596

RESUMO

OBJECTIVE: The incidence of infections from extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales (ESBL-E) is increasing in the United States. We describe the epidemiology of ESBL-E at 5 Emerging Infections Program (EIP) sites. METHODS: During October-December 2017, we piloted active laboratory- and population-based (New York, New Mexico, Tennessee) or sentinel (Colorado, Georgia) ESBL-E surveillance. An incident case was the first isolation from normally sterile body sites or urine of Escherichia coli or Klebsiella pneumoniae/oxytoca resistant to ≥1 extended-spectrum cephalosporin and nonresistant to all carbapenems tested at a clinical laboratory from a surveillance area resident in a 30-day period. Demographic and clinical data were obtained from medical records. The Centers for Disease Control and Prevention (CDC) performed reference antimicrobial susceptibility testing and whole-genome sequencing on a convenience sample of case isolates. RESULTS: We identified 884 incident cases. The estimated annual incidence in sites conducting population-based surveillance was 199.7 per 100,000 population. Overall, 800 isolates (96%) were from urine, and 790 (89%) were E. coli. Also, 393 cases (47%) were community-associated. Among 136 isolates (15%) tested at the CDC, 122 (90%) met the surveillance definition phenotype; 114 (93%) of 122 were shown to be ESBL producers by clavulanate testing. In total, 111 (97%) of confirmed ESBL producers harbored a blaCTX-M gene. Among ESBL-producing E. coli isolates, 52 (54%) were ST131; 44% of these cases were community associated. CONCLUSIONS: The burden of ESBL-E was high across surveillance sites, with nearly half of cases acquired in the community. EIP has implemented ongoing ESBL-E surveillance to inform prevention efforts, particularly in the community and to watch for the emergence of new ESBL-E strains.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico
11.
Microb Drug Resist ; 28(4): 389-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35172110

RESUMO

Carbapenem-resistant Enterobacterales (CRE) are a growing public health concern due to resistance to multiple antibiotics and potential to cause health care-associated infections with high mortality. Carbapenemase-producing CRE are of particular concern given that carbapenemase-encoding genes often are located on mobile genetic elements that may spread between different organisms and species. In this study, we performed phenotypic and genotypic characterization of CRE collected at eight U.S. sites participating in active population- and laboratory-based surveillance of carbapenem-resistant organisms. Among 421 CRE tested, the majority were isolated from urine (n = 349, 83%). Klebsiella pneumoniae was the most common organism (n = 265, 63%), followed by Enterobacter cloacae complex (n = 77, 18%) and Escherichia coli (n = 50, 12%). Of 419 isolates analyzed by whole genome sequencing, 307 (73%) harbored a carbapenemase gene; variants of blaKPC predominated (n = 299, 97%). The occurrence of carbapenemase-producing K. pneumoniae, E. cloacae complex, and E. coli varied by region; the predominant sequence type within each genus was ST258, ST171, and ST131, respectively. None of the carbapenemase-producing CRE isolates displayed resistance to all antimicrobials tested; susceptibility to amikacin and tigecycline was generally retained.


Assuntos
Carbapenêmicos , Infecções por Enterobacteriaceae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Enterobacter , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Escherichia coli/genética , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Estados Unidos , beta-Lactamases/genética
12.
Antimicrob Agents Chemother ; 65(12): e0110521, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34570648

RESUMO

Carbapenemase gene-positive (CP) Gram-negative bacilli are of significant clinical and public health concern. Their rapid detection and containment are critical to preventing their spread and additional infections they can cause. To this end, CDC developed the Antibiotic Resistance Laboratory Network (AR Lab Network), in which public health laboratories across all 50 states, several cities, and Puerto Rico characterize clinical isolates of carbapenem-resistant Enterobacterales (CRE), Pseudomonas aeruginosa (CRPA), and Acinetobacter baumannii (CRAB) and conduct colonization screens to detect the presence of mobile carbapenemase genes. In its first 3 years, the AR Lab Network tested 76,887 isolates and 31,001 rectal swab colonization screens. Targeted carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like, blaVIM, or blaIMP) were detected by PCR in 35% of CRE, 2% of CRPA, and <1% of CRAB isolates and 8% of colonization screens tested, respectively. blaKPC and blaVIM were the most common genes in CP-CRE and CP-CRPA isolates, respectively, but regional differences in the frequency of carbapenemase genes detected were apparent. In CRE and CRPA isolates tested for carbapenemase production and the presence of the targeted genes, 97% had concordant results; 3% of CRE and 2% of CRPA isolates were carbapenemase production positive but PCR negative for those genes. Isolates harboring blaNDM showed the highest frequency of resistance across the carbapenems tested, and those harboring blaIMP and blaOXA-48-like genes showed the lowest frequency of carbapenem resistance. The AR Lab Network provides a national snapshot of rare and emerging carbapenemase genes, delivering data to inform public health actions to limit the spread of these antibiotic resistance threats.


Assuntos
Carbapenêmicos , Laboratórios , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Atenção à Saúde , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
13.
Emerg Infect Dis ; 27(9): 2475-2479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424168

RESUMO

Reports of organisms harboring multiple carbapenemase genes have increased since 2010. During October 2012-April 2019, the Centers for Disease Control and Prevention documented 151 of these isolates from 100 patients in the United States. Possible risk factors included recent history of international travel, international inpatient healthcare, and solid organ or bone marrow transplantation.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Proteínas de Bactérias/genética , Bactérias Gram-Negativas , Humanos , Estados Unidos/epidemiologia , beta-Lactamases/genética
14.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414286

RESUMO

Thirty Clostridioides difficile isolates collected in 2016 through the Centers for Disease Control and Prevention Emerging Infections Program were selected for reference antimicrobial susceptibility testing and whole-genome sequencing. Here, we present the genetic characteristics of these isolates and announce their availability in the CDC & FDA Antibiotic Resistance Isolate Bank.

15.
J Antimicrob Chemother ; 76(4): 979-983, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33367916

RESUMO

BACKGROUND: Aztreonam/avibactam is a combination agent that shows promise in treating infections caused by highly antibiotic-resistant MBL-producing Enterobacterales. This combination can be achieved by combining two FDA-approved drugs: ceftazidime/avibactam and aztreonam. It is unknown whether ceftazidime in the combination ceftazidime/aztreonam/avibactam has a synergistic or antagonistic effect on the in vitro activity of aztreonam/avibactam by significantly increasing or decreasing the MIC. OBJECTIVES: To determine whether increasing ceftazidime concentrations affect the MICs of aztreonam/avibactam alone. METHODS: A custom 8 × 8 chequerboard broth microdilution (BMD) panel was made using a digital dispenser (Hewlett-Packard, Corvallis, OR, USA). The panel included orthogonal 2-fold dilution series of aztreonam and ceftazidime ranging from 0.5 to 64 mg/L. Avibactam concentration was kept constant at 4 mg/L throughout the chequerboard. Thirty-seven Enterobacterales isolates from the CDC & FDA Antibiotic Resistance Isolate Bank or CDC's internal collection with intermediate or resistant interpretations to aztreonam and ceftazidime/avibactam were included for testing. All isolates harboured at least one of the following MBL genes: blaIMP, blaNDM or blaVIM. RESULTS: Regardless of the concentration of ceftazidime, aztreonam/avibactam with ceftazidime MICs for all 37 isolates were within one 2-fold doubling dilution of the aztreonam/avibactam MIC. CONCLUSIONS: Ceftazidime, in the combination ceftazidime/avibactam/aztreonam, did not affect the in vitro activity of aztreonam/avibactam in this sample of isolates. These findings can help assure clinical and public health laboratories that testing of aztreonam/avibactam by BMD can act as a reliable surrogate test when the combination of ceftazidime/avibactam and aztreonam is being considered for treatment of highly antibiotic-resistant MBL-producing Enterobacterales.


Assuntos
Aztreonam , Ceftazidima , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases
16.
Front Microbiol ; 12: 807398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178041

RESUMO

Enterococcus faecalis and faecium with resistance to daptomycin and/or linezolid are emerging globally. We present the genomic characterization of daptomycin- and linezolid-resistant E. faecalis and E. faecium surveillance isolates from the United States, 2013-2016. Daptomycin resistance was low among E. faecalis (2/364, 0.5%) and E. faecium (17/344, 5%). The majority (71%, 12/17) of daptomycin-resistant E. faecium isolates belonged to the emerging ST736 clone and contained mutations in liaFSR and cls previously associated with resistance. However, 1/2 E. faecalis and 3/17 E. faecium did not contain these mutations previously associated with daptomycin resistance. Linezolid resistance was rare among E. faecalis (1/364, 0.3%) and E. faecium (2/344, 0.6%). These two E. faecium isolates, one of which was also resistant to daptomycin and vancomycin, contained the 23S rRNA nucleotide mutation (G2576T) associated with linezolid resistance. Long-read sequencing revealed the linezolid-resistant E. faecalis isolate contained chromosomal- and plasmid-encoded copies of optrA. The chromosomal optrA was located on the recently described Tn6674 multiresistance transposon. The second copy of optrA was encoded on an ∼65 kb mosaic plasmid, with component regions sharing high sequence identity to optrA-encoding multiresistance plasmids of animal origin. The optrA-encoding plasmid contained open reading frames predicted to encode proteins associated with a pheromone-responsive plasmid transfer system, and filter mating experiments confirmed the plasmid was conjugative. Continued surveillance of enterococci is necessary to assess the prevalence and trends of daptomycin and linezolid resistance in the United States, characterize resistance mechanisms and how they transfer, and monitor for emerging sequence types associated with resistance.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32540972

RESUMO

The treatment of infections caused by carbapenem-resistant Enterobacterales, especially New Delhi metallo-ß-lactamase (NDM)-producing bacteria, is challenging. Although less common in the United States than some other carbapenemase producers, NDM-producing bacteria are a public health threat due to the limited treatment options available. Here, we report on the antibiotic susceptibility of 275 contemporary NDM-producing Enterobacterales collected from 30 U.S. states through the Centers for Disease Control and Prevention's Antibiotic Resistance Laboratory Network. The aims of the study were to determine the susceptibility of these isolates to 32 currently available antibiotics using reference broth microdilution and to explore the in vitro activity of 3 combination agents that are not yet available. Categorical interpretations were determined using Clinical and Laboratory Standards Institute (CLSI) interpretive criteria. For agents without CLSI criteria, Food and Drug Administration (FDA) interpretive criteria were used. The percentage of susceptible isolates did not exceed 90% for any of the FDA-approved antibiotics tested. The antibiotics with breakpoints that had the highest in vitro activity were tigecycline (86.5% susceptible), eravacycline (66.2% susceptible), and omadacycline (59.6% susceptible); 18.2% of isolates were susceptible to aztreonam. All NDM-producing isolates tested were multidrug resistant, and 116 isolates were extensively drug resistant (42.2%); 207 (75.3%) isolates displayed difficult-to-treat resistance. The difficulty in treating infections caused by NDM-producing Enterobacterales highlights the need for containment and prevention efforts to keep these infections from becoming more common.


Assuntos
Enterobacteriaceae , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
18.
J Clin Microbiol ; 58(4)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32051259

RESUMO

Aztreonam-avibactam is a combination antimicrobial agent with activity against carbapenemase-producing Enterobacteriaceae (CPE) with metallo-ß-lactamases (MßLs). Although aztreonam-avibactam is not yet approved by the U.S. Food and Drug Administration (FDA), clinicians can administer this combination by using two FDA-approved drugs: aztreonam and ceftazidime-avibactam. This combination of drugs is recommended by multiple experts for treatment of serious infections caused by MßL-producing CPE. At present, in vitro antimicrobial susceptibility testing (AST) of aztreonam-avibactam is not commercially available; thus, most clinicians receive no laboratory-based guidance that can support consideration of aztreonam-avibactam for serious CPE infections. Here, we report our internal validation for aztreonam-avibactam AST by reference broth microdilution (BMD) according to Clinical and Laboratory Standards Institute (CLSI) guidelines. The validation was performed using custom frozen reference BMD panels prepared in-house at the Centers for Disease Control and Prevention (CDC). In addition, we took this opportunity to evaluate a new panel-making method using a digital dispenser, the Hewlett Packard (HP) D300e. Our studies demonstrate that the performance characteristics of digitally dispensed panels were equivalent to those of conventionally prepared frozen reference BMD panels for a number of drugs, including aztreonam-avibactam. We found the HP D300e digital dispenser to be easy to use and to provide the capacity to prepare complex drug panels. Our findings will help other clinical and public health laboratories implement susceptibility testing for aztreonam-avibactam.


Assuntos
Aztreonam , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Compostos Azabicíclicos , Aztreonam/farmacologia , Ceftazidima , Combinação de Medicamentos , beta-Lactamases
20.
Emerg Infect Dis ; 25(7): 1281-1288, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211681

RESUMO

Pseudomonas aeruginosa is intrinsically resistant to many antimicrobial drugs, making carbapenems crucial in clinical management. During July-October 2015 in the United States, we piloted laboratory-based surveillance for carbapenem-resistant P. aeruginosa (CRPA) at sentinel facilities in Georgia, New Mexico, Oregon, and Tennessee, and population-based surveillance in Monroe County, NY. An incident case was the first P. aeruginosa isolate resistant to antipseudomonal carbapenems from a patient in a 30-day period from any source except the nares, rectum or perirectal area, or feces. We found 294 incident cases among 274 patients. Cases were most commonly identified from respiratory sites (120/294; 40.8%) and urine (111/294; 37.8%); most (223/280; 79.6%) occurred in patients with healthcare facility inpatient stays in the prior year. Genes encoding carbapenemases were identified in 3 (2.3%) of 129 isolates tested. The burden of CRPA was high at facilities under surveillance, but carbapenemase-producing CRPA were rare.


Assuntos
Carbapenêmicos/farmacologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carbapenêmicos/uso terapêutico , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/história , Comorbidade , Feminino , História do Século XXI , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Infecções por Pseudomonas/história , Vigilância em Saúde Pública , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA