Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 6): 125-134, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38818823

RESUMO

The RSF complex belongs to the ISWI chromatin-remodeling family and is composed of two subunits: RSF1 (remodeling and spacing factor 1) and SNF2h (sucrose nonfermenting protein 2 homolog). The RSF complex participates in nucleosome spacing and assembly, and subsequently promotes nucleosome maturation. Although SNF2h has been extensively studied in the last few years, the structural and functional properties of the remodeler RSF1 still remain vague. Here, a cryo-EM structure of the RSF-nucleosome complex is reported. The 3D model shows a two-lobe architecture of RSF, and the structure of the RSF-nucleosome (flanked with linker DNA) complex shows that the RSF complex moves the DNA away from the histone octamer surface at the DNA-entry point. Additionally, a nucleosome-sliding assay and a restriction-enzyme accessibility assay show that the RSF1 subunit may cause changes in the chromatin-remodeling properties of SNF2h. As a `nucleosome ruler', the results of an RSF-dinucleosome binding affinity test led to the proposal that the critical distance that RSF `measures' between two nucleosomes is about 24 base pairs.


Assuntos
Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Nucleossomos , Microscopia Crioeletrônica/métodos , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Histonas/genética , Humanos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Adenosina Trifosfatases , Proteínas Cromossômicas não Histona , Transativadores
2.
Cell Res ; 33(10): 790-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666978

RESUMO

In Saccharomyces cerevisiae, cryptic transcription at the coding region is prevented by the activity of Sin3 histone deacetylase (HDAC) complex Rpd3S, which is carried by the transcribing RNA polymerase II (RNAPII) to deacetylate and stabilize chromatin. Despite its fundamental importance, the mechanisms by which Rpd3S deacetylates nucleosomes and regulates chromatin dynamics remain elusive. Here, we determined several cryo-EM structures of Rpd3S in complex with nucleosome core particles (NCPs), including the H3/H4 deacetylation states, the alternative deacetylation state, the linker tightening state, and a state in which Rpd3S co-exists with the Hho1 linker histone on NCP. These structures suggest that Rpd3S utilizes a conserved Sin3 basic surface to navigate through the nucleosomal DNA, guided by its interactions with H3K36 methylation and the extra-nucleosomal DNA linkers, to target acetylated H3K9 and sample other histone tails. Furthermore, our structures illustrate that Rpd3S reconfigures the DNA linkers and acts in concert with Hho1 to engage the NCP, potentially unraveling how Rpd3S and Hho1 work in tandem for gene silencing.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Cromatina , DNA , Saccharomyces cerevisiae/metabolismo , Histona Desacetilases/metabolismo
3.
Cell Rep ; 41(10): 111732, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476863

RESUMO

The rearrangement hotspot (Rhs) repeat is an ancient giant protein fold found in all domains of life. Rhs proteins are polymorphic toxins that could either be deployed as an ABC complex or via a type VI secretion system (T6SS) in interbacterial competitions. To explore the mechanism of T6SS-delivered Rhs toxins, we used the gastroenteritis-associated Vibrio parahaemolyticus as a model organism and identified an Rhs toxin-immunity pair, RhsP-RhsPI. Our data show that RhsP-dependent prey targeting by V. parahaemolyticus requires T6SS2. RhsP can bind to VgrG2 independently without a chaperone and spontaneously self-cleaves into three fragments. The toxic C-terminal fragment (RhsPC) can bind to VgrG2 via a VgrG2-interacting region (VIR). Our electron microscopy (EM) analysis reveals that the VIR is encapsulated inside the Rhs ß barrel structure and that autoproteolysis triggers a dramatic conformational change of the VIR. This alternative VIR conformation promotes RhsP dimerization, which significantly contributes to T6SS2-mediated prey targeting by V. parahaemolyticus.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio parahaemolyticus
4.
FEBS Open Bio ; 9(9): 1589-1602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314152

RESUMO

Ragulator is a pentamer composed of p18, MP1, p14, C7orf59, and hepatitis B virus X-interacting protein (HBXIP; LAMTOR 1-5) which acts as a lysosomal scaffold of the Rag GTPases in the amino acid sensitive branch of TORC1 signaling. Here, we present the crystal structure of human HBXIP-C7orf59 dimer (LAMTOR 4/5) at 2.9 Å and identify a phosphorylation site on C7orf59 which modulates its interaction with p18. Additionally, we demonstrate the requirement of HBXIP-C7orf59 to stabilize p18 and allow further binding of MP1-p14. The structure of the dimer revealed an unfolded N terminus in C7orf59 (residues 1-15) which was shown to be essential for p18 binding. Full-length p18 does not interact stably with MP1-p14 in the absence of HBXIP-C7orf59, but deletion of p18 residues 108-161 rescues MP1-p14 binding. C7orf59 was phosphorylated by protein kinase A (PKA) in vitro and mutation of the conserved Ser67 residue to aspartate prevented phosphorylation and negatively affected the C7orf59 interaction with p18 both in cell culture and in vitro. C7orf59 Ser67 was phosphorylated in human embryonic kidney 293T cells. PKA activation with forskolin induced dissociation of p18 from C7orf59, which was prevented by the PKA inhibitor H-89. Our results highlight the essential role of HBXIP-C7orf59 dimer as a nucleator of pentameric Ragulator and support a sequential model of Ragulator assembly in which HBXIP-C7orf59 binds and stabilizes p18 which allows subsequent binding of MP1-p14.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Células Cultivadas , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica
5.
Comput Intell Neurosci ; 2016: 8571265, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069470

RESUMO

Grounded language acquisition is an important issue, particularly to facilitate human-robot interactions in an intelligent and effective way. The evolutionary and developmental language acquisition are two innovative and important methodologies for the grounding of language in cognitive agents or robots, the aim of which is to address current limitations in robot design. This paper concentrates on these two main modelling methods with the grounding principle for the acquisition of linguistic ability in cognitive agents or robots. This review not only presents a survey of the methodologies and relevant computational cognitive agents or robotic models, but also highlights the advantages and progress of these approaches for the language grounding issue.


Assuntos
Inteligência Artificial , Idioma , Modelos Teóricos , Robótica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA