Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992908

RESUMO

Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Titânio/química , Catálise , Luz
2.
Environ Sci Pollut Res Int ; 28(8): 9050-9066, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33483933

RESUMO

The world's water supplies have been contaminated due to large effluents containing toxic pollutants such as dyes, heavy metals, surfactants, personal care products, pesticides, and pharmaceuticals from agricultural, industrial, and municipal resources into water streams. Water contamination and its treatment have emerged out as an escalating challenge globally. Extraordinary efforts have been made to overcome the challenges of wastewater treatment in recent years. Various techniques such as chemical methods like Fenton oxidation and electrochemical oxidation, physical procedures like adsorption and membrane filtration, and several biological techniques have been recognized for the treatment of wastewater. This review communicates insights into recent research developments in different treatment techniques and their applications to eradicate various water contaminants. Research gaps have also been identified regarding multiple strategies for understanding key aspects that are important to pilot-scale or large-scale systems. Based on this review, it can be determined that adsorption is a simple, sustainable, cost-effective, and environmental-friendly technique for wastewater treatment, among all other existing technologies. However, there is a need for further research and development, optimization, and practical implementation of the integrated process for a wide range of applications.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA