Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Radioact ; 255: 107006, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162146

RESUMO

This is a detailed study on oxide (CO2) and reduced (hydrocarbons, CnHm) forms of 14C releases through gaseous effluents from the Kaiga nuclear power plant (NPP), on the West Coast of India, where 4 × 220 MW(e) pressurized heavy water reactors (PHWRs) are operating. The gaseous effluent from the common stack of reactor units 3 and 4 (each of 220 MW(e)) was sampled from 2017 to 2020 for 14C activity monitoring and analysed for 14C activity by liquid scintillation counting. The normalized release rate corresponding to the four-year monitoring period had a geometric mean value of 0.12 TBq GW(e)-1 a-1 (geometric standard deviation = 7.4), and the arithmetic mean with associated standard deviation was 0.75 ± 1.47 TBq GW(e)-1 a-1. The relative percentage contribution of reduced form (CH4) of 14C species was less than 1.27% of the total release. The normalized release rate from Kaiga NPP was similar to those reported for the other PHWR NPPs of the world. The 14C specific activity in the ambient air in the vicinity of the NPP was monitored at four locations. The maximum excess 14C activity values in the ambient air in the vicinity of the NPP, evaluated by comparing the specific activity recorded for the clean air region at ∼300 km from the NPP, were 65.1 Bq kg-1C (28.76 pMC) and 222.4 Bq kg-1C (98.23 pMC) for the years 2019 and 2020 respectively. In addition, the release rates were calculated from the Gaussian plume model using site-specific atmospheric dilution factors and the excess 14C specific activity measured at four off-site monitoring stations. The calculated values of release rates were in agreement (within a factor of ∼3) with the measured values.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Centrais Nucleares , Radioisótopos de Carbono/análise , Óxido de Deutério , Poluentes Radioativos do Ar/análise , Índia , Gases
2.
Appl Radiat Isot ; 172: 109685, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33799067

RESUMO

A method for the determination of 14C activity in the ambient air was optimised with the development of a simple setup for the regeneration of CO2 from carbonate sample and saturating the absorber in <45 min for direct determination of activity by liquid scintillation counting (LSC). Atmospheric CO2 was trapped in NaOH solution and precipitated as BaCO3 by adding BaCl2. The carbonate sample was taken in a newly designed regeneration system, subjected to acid hydrolysis, and the absorber (CarboSorb-E) was saturated with the CO2 regenerated from carbonate sample. This allowed optimisation of CO2 absorption by the absorber (up to ~ 2.3941 g of CO2/10 mL with an average of 2.1688 g) and a minimum detectable activity value of 14 Bq kg-1C for a counting time of 300 min (8 Bq kg-1C for 1000 min) was achieved with Quantulus - 1220 LSC system. The necessity of (i) the measurement of the total volume of air sampled, (ii) the determination of trapping efficiency for CO2 in the NaOH, recovery of 14C in chemical processing of BaCO3, and subsequent regeneration and absorption processes, and (iii) independent determination of carbon content in the air for expressing the results in terms of 14C specific activity (Bq kg-1C), are avoided in this method. The method is capable of yielding accurate results, in a considerably shorter time when compared to previously reported methods, with a deviation of <2.2% from the target value (with a relative standard deviation of 1.1%, and a relative error of 0.53%) when ambient air samples from clean air region (region not affected by local anthropogenic sources of 14C) are analysed. Validation of the method was performed by (i) analysing BaCO3 sample derived from ambient air by accelerator mass spectrometry, and (ii) analysing the CO2 produced from the combustion of IAEA C3 reference material. Upon validation, the suitability of the method for determining small excess 14C specific activity in the vicinity of a nuclear power plant was demonstrated.

3.
Appl Radiat Isot ; 166: 109390, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091858

RESUMO

Tritium in the form of tritiated water is easily incorporated into terrestrial biota as tissue free water tritium (TFWT). A part of TFWT is converted into organically bound tritium (OBT) through metabolic processes. For the computation of NE-OBT activity (expressed as Bq L-1 of combustion water) in terrestrial plants, knowledge on 'water equivalent factor (WEQp)', defined as the volume of water produced from the combustion of 1 kg of the dry sample, is essential. On a global scenario, experimental data are not available on this parameter. This paper presents (i) a method for determination of WEQp by combustion method using a tube furnace system, (ii) a large database (N = 294) on WEQp parameter for samples of tropical monsoonal climate region of the Indian subcontinent, and (iii) NE-OBT activity in terrestrial biota samples (N = 186) collected from the vicinity of a PHWR nuclear power plant of India. The data generated in this study on WEQp serves for the validation of the data compiled in IAEA (2009 and 2010), which are estimated based on the hydrogen content of protein, fat and carbohydrates, and the fractions of protein, fat and carbohydrates. The WEQp varied in the ranges of 0.492-0.678 L kg-1 (GM = 0.569 Bq L-1, GSD = 1.06), 0.520-0.630 L kg-1 (GM = 0.557 Bq L-1, GSD = 1.02) 0.473-0.633 L kg-1 (GM = 0.562 Bq L-1, GSD = 1.02) for non-leafy vegetables, leafy vegetables, and fruits, respectively. A comparison between the experimental WEQp data with those compiled in the IAEA report revealed that the maximum deviation between the two data sets is <10%. The NE-OBT activity in the food samples collected from 2.3 to 20 km zone around NPP had a geometric mean (GM) value of 25.4 Bq L-1 (GSD = 1.6, N = 186). Variations in NE-OBT activity with different seasons of the year are discussed.

4.
J Environ Radioact ; 192: 194-207, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29982004

RESUMO

As a part of establishing a regional database on natural radioactivity, the atmospheric concentrations of 210Pb and 7Be were measured over a three and half year period (2014-2017) in Mangalore and Kaiga in the South West Coast of India. A total of 99 air samples, collected in the different months of the year, were analysed in this study. The mean activity concentrations of 7Be and 210Pb were found to be 5.5 ±â€¯3.1 mBq m-3 and 1.1 ±â€¯0.73 mBq m-3, respectively. Both the radionuclides exhibited strong seasonal variations, with maximum concentration of 7Be occurring in the summer and that of 210Pb in the winter season. The concentration of both the radionuclides was minimum in the rainy season. Higher 210Pb concentration during winter was attributed to the ingression of continental air masses due to the wind regime from the North East. The sunspot number index of the solar activity also plays an important role in the increase and decrease of 7Be concentration in the air. A clear trend of increased and lowered concentration of 7Be with lower and higher solar activity (low and high sunspot number), respectively, in accordance with the 11-year solar cycle, was observed in this study. The temporal variation of PM10 concentration was also studied and it showed maximum value in the winter and minimum in the rainy season with an average of 56.9 µg m-3. Statistically significant positive correlation was observed between the PM10 and 210Pb activity concentration, whereas a weak correlation was observed between PM10 and 7Be. This is due to the fact that 7Be is largely associated with sub-micrometer size particles, whereas PM10 is contributed by larger sizes. The dependence of the activity concentrations of 7Be and 210Pb with meteorological parameters such as rainfall, temperature, and humidity was studied through linear regression analysis. A significant correlation was observed between 7Be and 210Pb concentrations with rainfall intensity (with identical correlation coefficients), which suggested that the removal mechanisms of these two radionuclides were similar. 7Be showed a strong correlation with temperature, whereas 210Pb with humidity. A comparison of the data obtained in the present study for the South West Coast of India with the global literature values of 7Be and 210Pb in aerosols showed that the values did not reflect the well-known latitudinal dependence of the 7Be tropospheric fluxes. Overall, the study provides an improved understanding of the correlation and variability of 210Pb and 7Be concentrations in the atmosphere in the South West Coast of India.


Assuntos
Poluentes Radioativos do Ar/análise , Berílio/análise , Radioisótopos de Chumbo/análise , Monitoramento de Radiação , Radioisótopos/análise , Atmosfera/química , Índia , Chuva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA