Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Discov ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900051

RESUMO

Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3Z creates a platform that recruits critical kinases, such as LCK and ZAP70, initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy.

2.
Br J Cancer ; 131(1): 171-183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760444

RESUMO

BACKGROUND: Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS: Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS: RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION: Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Progressão da Doença , Epigênese Genética , Recidiva Local de Neoplasia , Fatores de Transcrição SOXC , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
3.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791952

RESUMO

The Wnt receptor ROR1 has generated increased interest as a cancer therapeutic target. Research on several therapeutic approaches involving this receptor is ongoing; however, ROR1 tissue expression remains understudied. We performed an immunohistochemistry analysis of ROR1 protein expression in a large cohort of multiple tumor and histologic types. We analyzed 12 anonymized multi-tumor tissue microarrays (TMAs), including mesothelioma, esophageal and upper gastrointestinal carcinomas, and uterine endometrioid carcinoma, among other tumor types. Additionally, we studied 5 different sarcoma types of TMAs and 6 patient-derived xenografts (PDX) TMAs developed from 19 different anatomic sites and tumor histologic types. A total of 1142 patient cases from different histologic types and 140 PDXs placed in TMAs were evaluated. Pathologists assessed the percentage of tumor cells in each case that were positive for ROR1 and the intensity of staining. For determining the prevalence of staining for each tumor type, a case was considered positive if >1% of its tumor cells showed ROR1 staining. Our immunohistochemistry assays revealed a heterogeneous ROR1 expression profile. A high prevalence of ROR1 expression was found in mesothelioma (84.6%), liposarcoma (36.1%), gastrointestinal stromal tumors (33.3%), and uterine endometrioid carcinoma (28.9%). Other histologic types such as breast, lung, renal cell, hepatocellular, urothelial carcinoma, and colon carcinomas; glioblastoma; cholangiocarcinoma; and leiomyosarcoma showed less ROR1 overall expression, ranging between 0.9 and 13%. No ROR1 expression was seen in mesenchymal chondrosarcoma, rhabdomyosarcoma, or gastric adenocarcinoma cases. Overall, ROR1 expression was relatively infrequent and low in most tumor types investigated; however, ROR1 expression was infrequent but high in selected tumor types, such as gastroesophageal GIST, suggesting that ROR1 prescreening may be preferable for those indications. Further, mesothelioma exhibited frequent and high levels of ROR1 expression, which represents a previously unrecognized therapeutic opportunity. These findings can contribute to the development of ROR1-targeted therapies.

4.
Cancers (Basel) ; 16(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611109

RESUMO

Breast cancer is the most common cancer among women. Metaplastic breast carcinoma (MpBC) is a rare, heterogeneous group of invasive breast carcinomas, which are classified as predominantly triple-negative breast carcinomas (TNBCs; HR-negative/HER2-negative). Histologically, MpBC is classified into six subtypes. Two of these are considered low-grade and the others are high-grade. MpBCs seem to be more aggressive, less responsive to neoadjuvant chemotherapy, and have higher rates of chemoresistance than other TNBCs. MpBCs have a lower survival rate than expected for TNBCs. MpBC treatment represents a challenge, leading to a thorough exploration of the tumor immune microenvironment, which has recently opened the possibility of new therapeutic strategies. The epithelial-mesenchymal transition in MpBC is characterized by the loss of intercellular adhesion, downregulation of epithelial markers, underexpression of genes with biological epithelial functions, upregulation of mesenchymal markers, overexpression of genes with biological mesenchymal functions, acquisition of fibroblast-like (spindle) morphology, cytoskeleton reorganization, increased motility, invasiveness, and metastatic capabilities. This article reviews and summarizes the current knowledge and translational aspects of MpBC.

5.
Leukemia ; 38(5): 1143-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467768

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation. Stat3-deficient HSPCs were significantly impaired in reconstitution ability following primary or secondary bone marrow transplantation, indicating hematopoietic stem cell (HSC) defects. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells (LSKs) revealed aberrant activation of cell cycle, p53, and interferon (IFN) pathways in Stat3-deficient HSPCs. Stat3-deficient LSKs accumulated γH2AX and showed increased expression of DNA sensors and type-I IFN (IFN-I), while treatment with A151-ODN inhibited expression of IFN-I and IFN-responsive genes. Further, the blockade of IFN-I receptor signaling suppressed aberrant cell cycling, STAT1 activation, and nuclear p53 accumulation. Collectively, our results show that STAT3 inhibits a deleterious autocrine IFN response in HSCs to maintain long-term HSC function. These data signify the importance of ensuring therapeutic STAT3 inhibitors are targeted specifically to diseased cells to avoid off-target loss of healthy HSPCs.


Assuntos
Comunicação Autócrina , Células-Tronco Hematopoéticas , Interferon Tipo I , Fator de Transcrição STAT3 , Animais , Fator de Transcrição STAT3/metabolismo , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
7.
Cancer Discov ; 14(5): 828-845, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358339

RESUMO

Zanidatamab is a bispecific human epidermal growth factor receptor 2 (HER2)-targeted antibody that has demonstrated antitumor activity in a broad range of HER2-amplified/expressing solid tumors. We determined the antitumor activity of zanidatamab in patient-derived xenograft (PDX) models developed from pretreatment or postprogression biopsies on the first-in-human zanidatamab phase I study (NCT02892123). Of 36 tumors implanted, 19 PDX models were established (52.7% take rate) from 17 patients. Established PDXs represented a broad range of HER2-expressing cancers, and in vivo testing demonstrated an association between antitumor activity in PDXs and matched patients in 7 of 8 co-clinical models tested. We also identified amplification of MET as a potential mechanism of acquired resistance to zanidatamab and demonstrated that MET inhibitors have single-agent activity and can enhance zanidatamab activity in vitro and in vivo. These findings provide evidence that PDXs can be developed from pretreatment biopsies in clinical trials and may provide insight into mechanisms of resistance. SIGNIFICANCE: We demonstrate that PDXs can be developed from pretreatment and postprogression biopsies in clinical trials and may represent a powerful preclinical tool. We identified amplification of MET as a potential mechanism of acquired resistance to the HER2 inhibitor zanidatamab and MET inhibitors alone and in combination as a therapeutic strategy. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Anticorpos Biespecíficos , Receptor ErbB-2 , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Receptor ErbB-2/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Camundongos , Feminino , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia
8.
Cancer Cell ; 42(2): 225-237.e5, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38278149

RESUMO

Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC subtypes and might guide precision SCLC therapy.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metilação de DNA , Ácidos Nucleicos Livres/genética , Epigênese Genética , Biomarcadores Tumorais/genética
9.
Nat Commun ; 15(1): 180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167338

RESUMO

Inactivating TP53 mutations leads to a loss of function of p53, but can also often result in oncogenic gain-of-function (GOF) of mutant p53 (mutp53) proteins which promotes tumor development and progression. The GOF activities of TP53 mutations are well documented, but the mechanisms involved remain poorly understood. Here, we study the mutp53 interactome and find that by targeting minichromosome maintenance complex components (MCMs), GOF mutp53 predisposes cells to replication stress and chromosomal instability (CIN), leading to a tumor cell-autonomous and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-dependent cytosolic DNA response that activates downstream non-canonical nuclear factor kappa light chain enhancer of activated B cell (NC-NF-κB) signaling. Consequently, GOF mutp53-MCMs-CIN-cytosolic DNA-cGAS-STING-NC-NF-κB signaling promotes tumor cell metastasis and an immunosuppressive tumor microenvironment through antagonizing interferon signaling and regulating genes associated with pro-tumorigenic inflammation. Our findings have important implications for understanding not only the GOF activities of TP53 mutations but also the genome-guardian role of p53 and its inactivation during tumor development and progression.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , DNA , Instabilidade Cromossômica/genética , Nucleotidiltransferases/metabolismo , Interferons/metabolismo , Microambiente Tumoral
10.
Cancers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38001750

RESUMO

The second most common breast carcinoma, invasive lobular carcinoma, accounts for approximately 15% of tumors of breast origin. Its incidence has increased in recent times due in part to hormone replacement therapy and improvement in diagnostic modalities. Although believed to arise from the same cell type as their ductal counterpart, invasive lobular carcinomas (ILCs) are a distinct entity with different regulating genetic pathways, characteristic histologies, and different biology. The features most unique to lobular carcinomas include loss of E-Cadherin leading to discohesion and formation of a characteristic single file pattern on histology. Because most of these tumors exhibit estrogen receptor positivity and Her2 neu negativity, endocrine therapy has predominated to treat these tumors. However novel treatments like CDK4/6 inhibitors have shown importance and antibody drug conjugates may be instrumental considering newer categories of Her 2 Low breast tumors. In this narrative review, we explore multiple pathological aspects and translational features of this unique entity. In addition, due to advancement in technologies like spatial transcriptomics and other hi-plex technologies, we have tried to enlist upon the characteristics of the tumor microenvironment and the latest associated findings to better understand the new prospective therapeutic options in the current era of personalized treatment.

11.
Cell Rep ; 42(12): 113470, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979166

RESUMO

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Assuntos
Carcinoma , Filamentos Intermediários , Humanos , Vimentina/metabolismo , Fosforilação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Carcinoma/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
12.
Front Immunol ; 14: 1217121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736101

RESUMO

Background: Lupus nephritis (LN) constitutes the most severe organ manifestations of systemic lupus erythematosus (SLE), where pathogenic T cells have been identified to play an essential role in 'helping' B cells to make autoantibodies and produce inflammatory cytokines that drive kidney injury in SLE. Regulatory T cells (Tregs), responsible for decreasing inflammation, are defective and decreased in SLE and have been associated with disease progression. We hypothesize that treatment with allogeneic, healthy Tregs derived from umbilical cord blood (UCB) may arrest such an inflammatory process and protect against kidney damage. Methods: UCB-Tregs function was examined by their ability to suppress CellTrace Violet-labeled SLE peripheral blood mononuclear cells (PBMCs) or healthy donor (HD) conventional T cells (Tcons); and by inhibiting secretion of inflammatory cytokines by SLE PBMCs. Humanized SLE model was established where female Rag2-/-γc-/- mice were transplanted with 3 × 106 human SLE-PBMCs by intravenous injection on day 0, followed by single or multiple injection of UCB-Tregs to understand their impact on disease development. Mice PB was assessed weekly by flow cytometry. Phenotypic analysis of isolated cells from mouse PB, lung, spleen, liver and kidney was performed by flow cytometry. Kidney damage was assessed by quantifying urinary albumin and creatinine secretion. Systemic disease was evaluated by anti-dsDNA IgG Ab analysis as well as immunohistochemistry analysis of organs. Systemic inflammation was determined by measuring cytokine levels. Results: In vitro, UCB-Tregs are able to suppress HD Tcons and pathogenic SLE-PBMCs to a similar extent. UCB-Tregs decrease secretion of several inflammatory cytokines including IFN-γ, IP-10, TNF-α, IL-6, IL-17A, and sCD40L by SLE PBMCs in a time-dependent manner, with a corresponding increase in secretion of suppressor cytokine, IL-10. In vivo, single or multiple doses of UCB-Tregs led to a decrease in CD8+ T effector cells in different organs and a decrease in circulating inflammatory cytokines. Improvement in skin inflammation and loss of hair; and resolution of CD3+, CD8+, CD20+ and Ki67+ SLE-PBMC infiltration was observed in UCB-Treg recipients with a corresponding decrease in plasma anti-double stranded DNA IgG antibody levels and improved albuminuria. Conclusions: UCB-Tregs can decrease inflammatory burden in SLE, reduce auto-antibody production and resolve end organ damage especially, improve kidney function. Adoptive therapy with UCB-Tregs should be explored for treatment of lupus nephritis in the clinical setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Feminino , Animais , Camundongos , Linfócitos T Reguladores , Nefrite Lúpica/terapia , Sangue Fetal , Leucócitos Mononucleares , Albuminúria , Lúpus Eritematoso Sistêmico/terapia , Anticorpos Antinucleares , Citocinas , Inflamação , DNA
13.
NPJ Breast Cancer ; 9(1): 66, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567892

RESUMO

TROP2 antibody drug conjugates (ADCs) are under active development. We seek to determine whether we can enhance activity of TROP2 ADCs by increasing TROP2 expression. In metaplastic breast cancers (MpBC), there is limited expression of TROP2, and downregulating transcription factor ZEB1 upregulates E-cad and TROP2, thus sensitizing cancers to TROP2 ADC sacituzumab govitecan (SG). Demethylating agent decitabine decreases DNA methyltransferase expression and TROP2 promoter methylation and subsequently increases TROP2 expression. Decitabine treatment as well as overexpression of TROP2 significantly enhance SG antitumor activity. Decitabine also increases SLFN11, a biomarker of topoisomerase 1 inhibitor (TOP1) sensitivity and is synergistic with SG which has a TOP1 payload, in TROP2-expressing SLFN11-low BC cells. In conclusion, TROP2 and SLFN11 expression can be epigenetically modulated and the combination of demethylating agent decitabine with TROP2 ADCs may represent a novel therapeutic approach for tumors with low TROP2 or SLFN11 expression.

14.
Clin Cancer Res ; 29(21): 4385-4398, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279095

RESUMO

PURPOSE: Cyclin E (CCNE1) has been proposed as a biomarker of sensitivity to adavosertib, a Wee1 kinase inhibitor, and a mechanism of resistance to HER2-targeted therapy. EXPERIMENTAL DESIGN: Copy number and genomic sequencing data from The Cancer Genome Atlas and MD Anderson Cancer Center databases were analyzed to assess ERBB2 and CCNE1 expression. Molecular characteristics of tumors and patient-derived xenografts (PDX) were assessed by next-generation sequencing, whole-exome sequencing, fluorescent in situ hybridization, and IHC. In vitro, CCNE1 was overexpressed or knocked down in HER2+ cell lines to evaluate drug combination efficacy. In vivo, NSG mice bearing PDXs were subjected to combinatorial therapy with various treatment regimens, followed by tumor growth assessment. Pharmacodynamic markers in PDXs were characterized by IHC and reverse-phase protein array. RESULTS: Among several ERBB2-amplified cancers, CCNE1 co-amplification was identified (gastric 37%, endometroid 43%, and ovarian serous adenocarcinoma 41%). We hypothesized that adavosertib may enhance activity of HER2 antibody-drug conjugate trastuzumab deruxtecan (T-DXd). In vitro, sensitivity to T-DXd was decreased by cyclin E overexpression and increased by knockdown, and adavosertib was synergistic with topoisomerase I inhibitor DXd. In vivo, the T-DXd + adavosertib combination significantly increased γH2AX and antitumor activity in HER2 low, cyclin E amplified gastroesophageal cancer PDX models and prolonged event-free survival (EFS) in a HER2-overexpressing gastroesophageal cancer model. T-DXd + adavosertib treatment also increased EFS in other HER2-expressing tumor types, including a T-DXd-treated colon cancer model. CONCLUSIONS: We provide rationale for combining T-DXd with adavosertib in HER2-expressing cancers, especially with co-occuring CCNE1 amplifications. See related commentary by Rolfo et al., p. 4317.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Ciclina E/genética , Hibridização in Situ Fluorescente , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptor ErbB-2/metabolismo , Camptotecina/farmacologia
15.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798265

RESUMO

STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as Stat3 deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated Stat3 deletion in 20% of the hematopoietic compartment. Stat3-deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to Stat3-sufficient (CreER) controls. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells revealed altered transcriptional responses in Stat3-deficient hematopoietic stem cells (HSCs) and multipotent progenitors, including intrinsic activation of cell cycle, stress response, and interferon signaling pathways. Consistent with their deregulation, Stat3-deficient Lin-ckit+Sca1+ cells accumulated γH2AX over time. Following secondary BM transplantation, Stat3-deficient HSPCs failed to reconstitute peripheral blood effectively, indicating a severe functional defect in the HSC compartment. Our results reveal essential roles for STAT3 in HSCs and suggest the potential for using targeted synthetic lethal approaches with STAT3 inhibition to remove defective or diseased HSPCs.

16.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367776

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.


Assuntos
Colite , Interleucina-6 , Camundongos , Animais , Qualidade de Vida , Colite/patologia , Imunoterapia , Inflamação
17.
Front Oncol ; 13: 1281650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192631

RESUMO

As the second most common subtype of breast carcinoma, Invasive Lobular Carcinoma (ILC) microenvironment features have not been thoroughly explored. ILC has different histological subtypes and elucidating differences in their microenvironments could lead to a comprehensive development of cancer therapies. We designed a custom-made cancer associated fibroblast (CAFs) panel and used multiplex immunofluorescence to identify the differences in tumor microenvironment between Classic ILC and Pleomorphic ILC. Materials and methods: Multiplex immunofluorescence were performed on formalin fixed paraffin embedded tissues using Opal-7 color kit. The antibodies used for phenotyping CAFs were Pan CK (AE1/AE3), CD45, A-SMA, FAP, S100, Thy-1 with optimized dilutions. The images were acquired and analyzed using Vectra 3.0 imaging system and InForm software respectively. Results: We studied 19 different CAFs colocalized phenotypes in the tumor, stroma and overall tissue compartments between classic and pleomorphic ILC. Total A-SMA+, A-SMA+FAP+S100+ and A-SMA+S100+ CAFs demonstrated higher densities in classic ILC cases while FAP+S100+ and S-100+ CAFs were increased in the pleomorphic subtype samples. Conclusion: Our study explores multiple CAFs phenotypes between classical and pleomorphic ILC. We showed that CAFs subset differ between Classic ILC and Pleomorphic ILC. A-SMA CAFs are more prevalent in the TME of classic ILCs whereas Pleomorphic ILCs are dominated by CAFs without A-SMA expression. This also iterates the importance of exploring this particular type of breast carcinoma in more detail, paving the way for meaningful translational research.

18.
Sci Rep ; 12(1): 19504, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376460

RESUMO

Triple negative breast cancer (TNBC) is a disease of poor prognosis, with the majority classified as the basal-like subtype associated with epithelial-mesenchymal transition and metastasis. Because basal breast cancers originate from proliferative luminal progenitor-like cells upon dysregulation of proper luminal differentiation, genes regulating luminal-basal transition are critical to elucidate novel therapeutic targets to improve TNBC outcomes. Herein we demonstrate that the tumor suppressor DEAR1/TRIM62 is a critical regulator of luminal cell fate. DEAR1 loss in human mammary epithelial cells results in significantly enhanced mammosphere formation that is accelerated in the presence of TGF-ß/SMAD3 signaling. Mammospheres formed following DEAR1 loss are enriched for ALDH1A1 and CK5 expression, EpCAM-/CD49f+ and CD44high/24low basal-like epithelial cells, indicating that DEAR1 regulates stem/progenitor cell properties and luminal-basal progenitor transition. We show that DEAR1 maintains luminal differentiation as a novel ubiquitin ligase for SNAI2/SLUG, a master regulator driving stemness and generation of basal-like progenitor populations. We also identify a significant inverse correlation between DEAR1 and SNAI2 expression in a 103 TNBC case cohort and show that low DEAR1 expression significantly correlates with young age of onset and shorter time to metastasis, suggesting DEAR1 could serve as a biomarker to stratify early onset TNBCs for targeted stem cell therapies.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Mama/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Diferenciação Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
20.
Nat Commun ; 13(1): 4327, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882862

RESUMO

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.


Assuntos
Ferroptose , Neoplasias Pulmonares , Ferroptose/genética , Humanos , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilcolinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA