Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 16(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38128125

RESUMO

In native tissue, remodeling of the pericellular space is essential for cellular activities and is mediated by tightly regulated proteases. Protease activity is dysregulated in many diseases, including many forms of cancer. Increased proteolytic activity is directly linked to tumor invasion into stroma, metastasis, and angiogenesis as well as all other hallmarks of cancer. Here we show a strategy for 3D bioprinting of breast cancer models using well-defined protease degradable hydrogels that can facilitate exploration of the multifaceted roles of proteolytic extracellular matrix remodeling in tumor progression. We designed a set of bicyclo[6.1.0]nonyne functionalized hyaluronan (HA)-based bioinks cross-linked by azide-modified poly(ethylene glycol) (PEG) or matrix metalloproteinase (MMP) degradable azide-functionalized peptides. Bioprinted structures combining PEG and peptide-based hydrogels were proteolytically degraded with spatial selectivity, leaving non-degradable features intact. Bioprinting of tumor-mimicking microenvironments using bioinks comprising human breast cancer cells (MCF-7) and fibroblast in hydrogels with different susceptibilities to proteolytic degradation shows that MCF-7 proliferation and spheroid size were significantly increased in protease degradable hydrogel compartments, but only in the presence of fibroblasts. In the absence of fibroblasts in the stromal compartment, cancer cell proliferation was reduced and did not differ between degradable and nondegradable hydrogels. The interactions between spatially separated fibroblasts and MCF-7 cells consequently resulted in protease-mediated remodeling of the bioprinted structures and a significant increase in cancer cell spheroid size, highlighting the close interplay between cancer cells and stromal cells in the tumor microenvironment and the influence of proteases in tumor progression.


Assuntos
Bioimpressão , Neoplasias da Mama , Humanos , Feminino , Microambiente Tumoral , Azidas , Peptídeos/química , Metaloproteinases da Matriz/metabolismo , Hidrogéis/química
2.
Sci Technol Adv Mater ; 24(1): 2165871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733710

RESUMO

Astrocytes play an important role in the central nervous system, contributing to the development of and maintenance of synapses, recycling of neurotransmitters, and the integrity and function of the blood-brain barrier. Astrocytes are also linked to the pathophysiology of various neurodegenerative diseases. Astrocyte function and organization are tightly regulated by interactions mediated by the extracellular matrix (ECM). Engineered hydrogels can mimic key aspects of the ECM and can allow for systematic studies of ECM-related factors that govern astrocyte behaviour. In this study, we explore the interactions between neuroblastoma (SH-SY5Y) and glioblastoma (U87) cell lines and human fetal primary astrocytes (FPA) with a modular hyaluronan-based hydrogel system. Morphological analysis reveals that FPA have a higher degree of interactions with the hyaluronan-based gels compared to the cell lines. This interaction is enhanced by conjugation of cell-adhesion peptides (cRGD and IKVAV) to the hyaluronan backbone. These effects are retained and pronounced in 3D bioprinted structures. Bioprinted FPA using cRGD functionalized hyaluronan show extensive and defined protrusions and multiple connections between neighboring cells. Possibilities to tailor and optimize astrocyte-compatible ECM-mimicking hydrogels that can be processed by means of additive biofabrication can facilitate the development of advanced tissue and disease models of the central nervous system.

3.
Adv Healthc Mater ; 11(11): e2102097, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114074

RESUMO

Laminins (LNs) are key components in the extracellular matrix of neuronal tissues in the developing brain and neural stem cell niches. LN-presenting hydrogels can provide a biologically relevant matrix for the 3D culture of neurons toward development of advanced tissue models and cell-based therapies for the treatment of neurological disorders. Biologically derived hydrogels are rich in fragmented LN and are poorly defined concerning composition, which hampers clinical translation. Engineered hydrogels require elaborate and often cytotoxic chemistries for cross-linking and LN conjugation and provide limited possibilities to tailor the properties of the materials. Here a modular hydrogel system for neural 3D cell cultures, based on hyaluronan and poly(ethylene glycol), that is cross-linked and functionalized with human recombinant LN-521 using bioorthogonal copper-free click chemistry, is shown. Encapsulated human neuroblastoma cells demonstrate high viability and grow into spheroids. Long-term neuroepithelial stem cells (lt-NES) cultured in the hydrogels can undergo spontaneous differentiation to neural fate and demonstrate significantly higher viability than cells cultured without LN. The hydrogels further support the structural integrity of 3D bioprinted structures and maintain high viability of bioprinted and syringe extruded lt-NES, which can facilitate biofabrication and development of cell-based therapies.


Assuntos
Bioimpressão , Hidrogéis , Técnicas de Cultura de Células , Humanos , Ácido Hialurônico , Hidrogéis/química , Hidrogéis/farmacologia , Laminina/farmacologia , Neurônios , Engenharia Tecidual
4.
Int J Nanomedicine ; 15: 3903-3920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606657

RESUMO

BACKGROUND: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue accessibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. PURPOSE: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. MATERIALS AND METHODS: In order to achieve a sustained release of T3, this factor was encapsulated within chitosan nanoparticles and chitosan-loaded T3 was incorporated within PCL nanofibers. Polyaniline graphene (PAG) nanocomposite was incorporated within gelatin nanofibers to endow the scaffold with conductive properties, which resemble the conductive behavior of axons. Biodegradation, water contact angle measurements, and scanning electron microscopy (SEM) observations as well as conductivity tests were used to evaluate the properties of the prepared scaffold. The concentration of PAG and T3-loaded chitosan NPs in nanofibers were optimized by examining the proliferation of cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The differentiation of BMSCs-derived NSCs cultured on the fabricated scaffolds into OLCs was analyzed by evaluating the expression of oligodendrocyte markers using immunofluorescence (ICC), RT-PCR and flowcytometric assays. RESULTS: Incorporating 2% PAG proved to have superior cell support and proliferation while guaranteeing electrical conductivity of 10.8 × 10-5 S/cm. Moreover, the scaffold containing 2% of T3-loaded chitosan NPs was considered to be the most biocompatible samples. Result of ICC, RT-PCR and flow cytometry showed high expression of O4, Olig2, platelet-derived growth factor receptor-alpha (PDGFR-α), O1, myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) high expressed but low expression of glial fibrillary acidic protein (GFAP). CONCLUSION: Considering surface topography, biocompatibility, electrical conductivity and gene expression, the hybrid PCL/gelatin scaffold with the controlled release of T3 may be considered as a promising candidate to be used as an in vitro model to study patient-derived oligodendrocytes by isolating patient's BMSCs in pathological conditions such as diseases or injuries. Moreover, the resulted oligodendrocytes can be used as a desirable source for transplanting in patients.


Assuntos
Materiais Biomiméticos/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular , Nanofibras/química , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Alicerces Teciduais/química , Compostos de Anilina/química , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Gelatina/química , Grafite/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/ultraestrutura , Células-Tronco Neurais/metabolismo , Oligodendroglia/efeitos dos fármacos , Poliésteres/química , Ratos , Suínos , Tri-Iodotironina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA