Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 4: 421-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195623

RESUMO

The objective of this work is to develop a microwave assisted-ultraviolet (MW-UV) digestion in the presence of dilute HCl and H2O2 followed by ion chromatography (IC) measurements for the determination of total nitrogen in cereals. This approach (MW-UV-IC) requires lesser time and does not need environmentally hazardous materials as used in Kjeldhal method. Further, the developed method requires only microliter quantities of dilute HCl and few milliliters of H2O2 for the matrix digestion and simultaneous conversion of nitrogen to its ionic species for the subsequent analysis by IC. At the optimized acid concentrations (200 â€‹µL of 0.1 â€‹mol â€‹L-1 HCl) and microwave power, the nitrogen in the cereals flours is converted to nitrate (NO3 -), nitrite (NO2 -) and ammonium (NH4 +) ions. The nitrogen species were separated using IonPac AS-20 and IonPac CS-17 columns and then quantified using suppressed conductivity detection. The method was applied to estimate the total nitrogen in flours of various cereals like; wheat (Triticum aestivum), rice (Oryza sativa), finger millet (Eleusine coracana), jowar (Sorghum) and pearl millet (Pennisetum glaucum). The results obtained using proposed method, were in good agreement with that of Kjeldhal method. Further, the precision of the values obtained by developed method was on par with the Kjeldhal method for all the tested flours as verified by F-test (n â€‹= â€‹5 and 95% confidence limit). Additionally, greenness assessment tools like analytical Eco-scale and green analytical procedure index (GAPI) suggested the proposed MW-UV-IC method, for the determination of total nitrogen in cereal flours, to be excellently green and safe.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 232: 118126, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062492

RESUMO

L-asparagine functionalized gold nanoparticles (Asp-AuNPs), have been synthesized by reducing HAuCl4 in presence of L-asparagine at 70 °C for 8 h. Asp-AuNPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS); the nanoparticles formed were spherical in shape with average size of 13.5 ± 3.7 nm. Synthesized Asp-AuNPs were found to exhibit excellent catalytic properties for the degradation of different organic dyes viz. Rhodamine B (RB), methyl orange (MO), acid red 27 (amaranth) and xylenol orange (XO) in the presence of sodium borohydride (NaBH4). Asp-AuNPs acts as electron relay system and serve as effective catalyst for complete degradation of all the tested dyes. Rate kinetic investigations suggested that catalysed degradation reactions follow pseudo-first order reaction kinetics with rate constant of 0.904 min-1, 0.314 min-1, 0.228 min-1 and 0.1 min-1 for RB, MO, amaranth and XO respectively.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117805, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31787536

RESUMO

Herein, we report a method for the synthesis of 4-aminohippuric acid (4-AHA) reduced/stabilized gold nanoparticles and their peroxidase mimicking properties for the colorimetric detection of Fe3+ and Hg2+. The synthesis of nanoparticles was evidenced by appearance of bright red color and an absorption peak at 518 nm. Transmission electron microscopic (TEM) characterization revealed the nanoparticles to be spherical with average size of about 5.9 ± 1.7 nm. X-ray diffraction (XRD) analysis established highly crystalline nature of the nanoparticles. The synthesized nanoparticles have shown very good peroxidase mimicking property; exhibiting the catalytic oxidation of the chromogen 3,3',5,5'-tetramethyl benzidine (TMB) to a blue color product, in the presence of hydrogen peroxide. The peroxidase mimicking activity of the nanoparticles was found to be selectivity enhanced in the presence of Fe3+ and Hg2+ while there was no change in the activity in the presence of other concomitant ions. The mechanism studies revealed that the synthesized gold nanoparticles assisted in electron transfer during the catalytic process however the stimulation of peroxidase-like activity in the presence of Fe3+ and Hg2+ is owed to both generation of hydroxyl radical and accelerated electron transfer. The assay was made selective for iron by the addition of cysteine in acetate buffer; whereas the selective detection of mercury was achieved by carrying out the assay in citrate buffer. The linear ranges for the determination of Fe3+ and Hg2+ in deionized water were found to be: 5-50 ppb and 5-200 ppb respectively. The limits of quantification (LOQ) for Fe3+ and Hg2+ were 4.0 and 2.5 ppb respectively. The assay was applied for the determination of Fe3+ and Hg2+ in drinking and ground water samples. The method holds potential for the on-field screening of these metal ions in real environmental samples.


Assuntos
Ouro/química , Água Subterrânea/análise , Ferro/análise , Mercúrio/análise , Nanopartículas Metálicas/química , Peroxidase/química , Ácido p-Aminoipúrico/química , Colorimetria
4.
IET Nanobiotechnol ; 11(2): 179-184, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28477001

RESUMO

A biosynthetic method for the production of selenium nanoparticles under ambient temperature and pressure from sodium selenite was developed using Gram-negative bacterial strain Escherichia coli ATCC 35218. Bacteriogenic nanoparticles were methodologically characterized employing UV-vis, XRD, Raman spectroscopy, SEM, TEM, DLS and FTIR techniques. Generation of nanoparticles was visualized from the appearance of red colour in the selenite supplemented culture medium and broad absorption bands in the UV-vis. Biofabricated nanoparticles were spherical, polydisperse, ranged from 100-183 nm and the average particle size was about 155 nm. Based on selected-area electron diffraction, XRD patterns; and Raman spectroscopy the nanospheres were found to be amorphous. IR spectrum revealed the involvement of bacterial proteins in the reduction of selenite and stabilization of nanoparticles. Used bacterial strain demonstrated efficient selenite reduction capability which was evident from 89.2% of selenium removal within 72 h at a concentration of 1 mM. Observation noted in the current study highlight the importance of bacterial reduction in selenium nanoparticle generation which can be scaled up for commercial production. Also, the bacteriogenic, amorphous nanoparticles can also be used as nutritional supplements for humans since selenium nanoparticles of 5-200 nm are bioavailable and known to induce seleno enzymes involved in antioxidant defence.


Assuntos
Produtos Biológicos/metabolismo , Escherichia coli/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Selênio/química , Selênio/metabolismo , Produtos Biológicos/síntese química , Escherichia coli/química , Escherichia coli/classificação , Teste de Materiais , Tamanho da Partícula , Especificidade da Espécie
5.
J Environ Manage ; 181: 231-236, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353373

RESUMO

A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres.


Assuntos
Biotecnologia/métodos , Nanopartículas/química , Pseudomonas aeruginosa/metabolismo , Selênio/química , Aerobiose , Biomimética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Oxirredução , Tamanho da Partícula , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Selênio/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
6.
IET Nanobiotechnol ; 9(6): 362-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26647812

RESUMO

Palladium nanoparticles (Pd NPs) were synthesised by using gum kondagogu (GK), a non-toxic ecofriendly biopolymer. GK acted as both reducing and stabilising agent for the synthesis of Pd NPs. Various reaction parameters, such as concentration of gum, Pd chloride and reaction pH were standardised for the stable synthesis of GK reduced stabilised Pd NPs (GK-Pd NPs). The nanoparticles have been characterised using ultraviolet-visible spectroscopy, transmission electron microscopy and X-ray diffraction. Physical characterisation revealed that the gum synthesised Pd NPs were in the size range of 6.5 ± 2.3 nm and crystallised in face centred cubic (FCC) symmetry. Fourier transform infrared spectroscopy implicated the role of carboxyl, amine and hydroxyl groups in the synthesis. The synthesised Pd NPs were found to be highly stable in nature. The synthesised nanoparticles were found to function as an effective green catalyst (k = 0.182 min⁻¹) in the reduction of 4-nitrophenol by sodium borohydride, which was evident from the colour change of bright yellow (nitrophenolate; λ(max) - 400 nm) to colourless (4-AP; λ(max) - 294 nm) solution. The overall objectives of the current communication were: (i) to synthesize the Pd NPs using a green reducing/capping agent; GK and (ii) to determine the catalytic performance of the synthesised Pd NPs.


Assuntos
Bixaceae/química , Nanopartículas Metálicas/química , Nitrofenóis/química , Paládio/isolamento & purificação , Casca de Planta/química , Extratos Vegetais/química , Produtos Biológicos/síntese química , Biopolímeros/química , Catálise , Química Verde/métodos , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Nitrofenóis/isolamento & purificação , Paládio/química , Tamanho da Partícula , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
7.
Talanta ; 118: 111-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274277

RESUMO

A highly sensitive and selective method is reported for the colorimetric detection of Hg(2+) in aqueous system by using label free silver nanoparticles (Ag NPs). Ag NPs used in this method were synthesized by gum kondagogu (GK) which acted as both reducing and stabilizing agent. The average size of the GK-Ag NPs was found to be 5.0 ± 2.8 nm as revealed by transmission electron microscope (TEM) analysis and the nanoparticles were stable at various pH conditions (pH 4-11) and salt concentrations (5-100 mM). The GK reduced/stabilized Ag NPs (GK-Ag NPs) were directly used for the selective colorimetric reaction with Hg(2+) without any further modification. The bright yellow colour of Ag NPs was found to fade in a concentration dependent manner with the added Hg(+) ions. The fading response was directly correlated with increasing concentration of Hg(2+). More importantly, this response was found to be highly selective for Hg(2+) as the absorption spectra were found to be unaffected by the presence of other ions like; Na(+), K(+), Mg(2+), Ca(2+), Cu(2+), Ni(2+), Co(2+), As(3+), Fe(2+), Cd(2+), etc. The metal sensing mechanism is explained based on the turbidometric and X-ray diffraction (XRD) analysis of GK-Ag NPs with Hg(2+). The proposed method was successfully applied for the determination of Hg(2+) in various ground water samples. The reported method can be effectively used for the quantification of total Hg(2+) in samples, wherein the organic mercury is first oxidized to inorganic form by ultraviolet (UV) irradiation. The limit of quantification for Hg(2+) using the proposed method was as low as 4.9 × 10(-8) mol L(-1) (50 nM). The proposed method has potential application for on-field qualitative detection of Hg(2+) in aqueous environmental samples.


Assuntos
Técnicas Biossensoriais/métodos , Bixaceae/química , Colorimetria , Mercúrio/análise , Nanopartículas Metálicas/química , Gomas Vegetais/química , Substâncias Redutoras/química , Prata/química , Água/química , Espectrofotometria Ultravioleta
8.
Bioinorg Chem Appl ; 2013: 871097, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23970844

RESUMO

The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3 ± 13.5, 19.3 ± 6.0, and 16.0 ± 4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline) was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics.

9.
Colloids Surf B Biointerfaces ; 108: 134-41, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23531744

RESUMO

A method for the synthesis of bovine serum albumin (BSA) and copper (Cu(0)) nanocomposites is described. The synthesis is achieved by adding [100mM] hydrazine hydrate ((N2H4·H2O) to [10mM] copper sulfate (CuSO4·5H2O) solution in the presence of 0.02% bovine serum albumin at pH-10.0 and then heating the reaction mixture at 50°C for 3h. The process resulted into the formation of well-dispersed hexagonal Cu-BSA composite particles (size 5±2.5) µm consisting of embedded copper nanoparticles (Cu NPs). The nanoparticles embedded in composite were of average diameters of 28±12nm. Phase analysis, purity and morphology of the product have been studied by various physical techniques. Effect of various reaction parameters have been investigated on the morphology of synthesized nanocomposite. Efforts have been made to investigate the possible mechanism of Cu-BSA composite synthesis which gave it unique hexagonal morphology. The important characteristic of the reported method is that the highly stable Cu NPs present in composite were synthesized without any inert atmosphere which could be dried under vacuum and stored for long term use. The synthesized Cu NPs containing BSA composite material exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentration (MIC) of Cu NPs in the form Cu-BSA composite on Escherichia coli was calculated to be 50µgmL(-1). Transmission electron microscopic and cytoplasmic leakage analysis revealed that Cu-BSA composite attached to the bacteria causing irreversible membrane damage leading to leakage of intracellular metabolites and eventually death of the organism.


Assuntos
Antibacterianos/síntese química , Cobre/química , Nanopartículas Metálicas/química , Nanocompostos/química , Soroalbumina Bovina/química , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hidrazinas/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1571-7, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364962

RESUMO

A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8±1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected-area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics.


Assuntos
Aminoglicosídeos/administração & dosagem , Aminoglicosídeos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Boroidretos/química , Sistemas de Liberação de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula
11.
Int J Radiat Biol ; 86(9): 719-31, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20670109

RESUMO

PURPOSE: An ethanolic extract of Nigella sativa L. (EE-NS) was investigated for its antioxidant properties and radioprotective effects against gamma-radiation-induced oxidative damage. MATERIALS AND METHODS: The radical scavenging activity of the extract was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), deoxyribose degradation and plasmid relaxation assays in a cell-free system. DNA damage studies were performed using a single cell gel electrophoresis (SCGE) assay and micronuclei (MN) formation. Moreover, the alterations in lipid peroxidation and antioxidant enzymes were measured by biochemical methods. RESULTS: EE-NS showed significant free radical scavenging and protection against DNA damage in cell free systems. Ex vivo treatment of mouse splenic lymphocytes with an ethanolic extract of N. sativa 1 h prior to irradiation (2 Gy) showed significant prevention of the formation of lipid-peroxides and intracellular reactive oxygen species (ROS), which correlated with radiation-induced apoptosis. Moreover, radiation-induced DNA damage was significantly prevented in splenocytes pre-treated with EE-NS. Swiss albino mice fed orally with the different doses of EE-NS (0-100 mg/kg bw) for five consecutive days followed by 2 Gy whole body irradiation (WBI) showed significant protection against oxidative injury to spleen and liver as measured by lipid peroxidation and the activity of antioxidant enzymes. These results were correlated with the prevention of DNA damage as measured by bone marrow micronuclei assay. Our results suggest that oral feeding of extract resulted in increased survival in mice exposed to WBI (7.5 Gy). CONCLUSION: The results obtained from the different experimental systems suggest the radioprotective ability of EE-NS involving prevention of radiation-induced oxidative damage.


Assuntos
Antioxidantes/farmacologia , Nigella sativa , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sistema Livre de Células , Dano ao DNA , Feminino , Sequestradores de Radicais Livres/farmacologia , Contagem de Leucócitos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Oxirredução , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA