Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
NAR Genom Bioinform ; 6(2): lqae062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835951

RESUMO

In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.

2.
Environ Sci Technol ; 58(23): 10116-10127, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38797941

RESUMO

In recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model. This work applies multicondition descriptors (MCDs) to develop a QSTR (Quantitative Structure-Toxicity Relationship) model based on a large toxicity data set comprising more than 80,000 compounds and 59 different end points (122,572 data points). The prediction capabilities of developed single-task multi-end point machine learning models as well as a novel data analysis approach with the use of Convolutional Neural Networks (CNN) are discussed. The results show that using MCDs significantly improves the model and using them with CNN-1D yields the best result (R2train = 0.93, R2ext = 0.70). Several structural features showed a high level of contribution to the toxicity, including van der Waals surface area (VSA), number of nitrogen-containing fragments (nN+), presence of S-P fragments, ionization potential, and presence of C-N fragments. The developed models can be very useful tools to predict the toxicity of various compounds under different conditions, enabling quick toxicity assessment of new compounds.


Assuntos
Aprendizado de Máquina , Compostos Orgânicos , Compostos Orgânicos/toxicidade , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Redes Neurais de Computação , Testes de Toxicidade , Animais
3.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586020

RESUMO

Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.

4.
ACS Mater Au ; 4(2): 195-203, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496050

RESUMO

Dielectric constant is an important property which is widely utilized in many scientific fields and characterizes the degree of polarization of substances under the external electric field. In this work, a structure-property relationship of the dielectric constants (ε) for a diverse set of polymers was investigated. A transparent mechanistic model was developed with the application of a machine learning approach that combines genetic algorithm and multiple linear regression analysis, to obtain a mechanistically explainable and transparent model. Based on the evaluation conducted using various validation criteria, four- and eight-variable models were proposed. The best model showed a high predictive performance for training and test sets, with R2 values of 0.905 and 0.812, respectively. Obtained statistical performance results and selected descriptors in the best models were analyzed and discussed. With the validation procedures applied, the models were proven to have a good predictive ability and robustness for further applications in polymer permittivity prediction.

5.
J Phys Chem B ; 128(9): 2190-2200, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38386478

RESUMO

The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we develop a procedure to better understand the photodegradation reactions combining density functional theory (DFT) based time-dependent excited-state molecular dynamics (TDESMD) studies with machine learning-based quantitative structure-activity relationships (QSAR) methodology. This procedure allows for the unveiling of hidden structural features between active orbitals that affect the rate of photodegradation and is coined InfoTDESMD. Findings show that electrotopological features are influential factors affecting the rate of photodegradation in differing environments. Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural features' influence on the rate of photodegradation of polymeric materials.

6.
J Phys Chem Lett ; 15(2): 471-480, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190332

RESUMO

Various coordination complexes have been the subject of experimental and theoretical studies in recent decades because of their fascinating photophysical properties. In this work, a combined experimental and computational approach was applied to investigate the optical properties of monocationic Ir(III) complexes. An interpretative machine learning-based quantitative structure-property relationship (ML/QSPR) model was successfully developed that could reliably predict the emission wavelength of the Ir(III) complexes and provide a foundation for the theoretical evaluation of the optical properties of Ir(III) complexes. A hypothesis was proposed to explain the differences in the emission wavelengths between structurally different individual Ir(III) complexes. The efficacy of the developed model was demonstrated by high R2 values of 0.84 and 0.87 for the training and test sets, respectively. It is worth noting that a relationship between the N-N distance in the diimine ligands of the Ir(III) complexes and emission wavelengths is detected. This effect is most probably associated with a degree of distortion in the octahedral geometry of the complexes, resulting in a perturbed ligand field. This combined experimental and computational approach shows great potential for the rational design of new Ir(III) complexes with the desired optical properties. Moreover, the developed methodology could be extended to other transition-metal complexes.

7.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762462

RESUMO

Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species. Then, the binding activity of 169 FDs to the enzyme acetylcholinesterase (AChE)-as a known target of toxins in fathead minnows and Daphnia magna, causing the inhibition of AChE-was analyzed. Finally, the structural aquatic toxicity alerts obtained from ToxAlert were used to confirm the possible mechanism of action. Machine learning and cheminformatics tools were used to analyze the data. Counter-propagation artificial neural network (CPANN) models were used to determine key binding properties of FDs to proteins associated with aquatic toxicity. Predicting the binding affinity of unknown FDs using quantitative structure-activity relationship (QSAR) models eliminates the need for complex and time-consuming calculations. The results of the study show which structural features of FDs have the greatest impact on aquatic organisms and help prioritize FDs and make manufacturing decisions.

8.
Toxics ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505560

RESUMO

Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely harmful to the environment. Heavy metals are toxic chemicals and considered one of the major hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of the methods to detect heavy metals in wastewaters. In this work, the quantitative structure-property relationship (QSPR) was applied using a range of machine learning techniques to predict the stability constant (logßML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy metal ions Cu2+, Cd2+, and Pb2+. In result, the logßML models developed for four ions showed good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2 of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological profiling were performed to investigate their metal-binding ability and developability of the designed sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency from simple resources. The three coumarins designed clearly demonstrated capability to be suitable as good florescent chemosensors towards heavy metals. Overall, the computational methods applied in this study showed a very good performance as useful tools for designing novel fluorescent probes and assessing their sensing abilities.

9.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110831

RESUMO

Multi-target drug development has become an attractive strategy in the discovery of drugs to treat of Alzheimer's disease (AzD). In this study, for the first time, a rule-based machine learning (ML) approach with classification trees (CT) was applied for the rational design of novel dual-target acetylcholinesterase (AChE) and ß-site amyloid-protein precursor cleaving enzyme 1 (BACE1) inhibitors. Updated data from 3524 compounds with AChE and BACE1 measurements were curated from the ChEMBL database. The best global accuracies of training/external validation for AChE and BACE1 were 0.85/0.80 and 0.83/0.81, respectively. The rules were then applied to screen dual inhibitors from the original databases. Based on the best rules obtained from each classification tree, a set of potential AChE and BACE1 inhibitors were identified, and active fragments were extracted using Murcko-type decomposition analysis. More than 250 novel inhibitors were designed in silico based on active fragments and predicted AChE and BACE1 inhibitory activity using consensus QSAR models and docking validations. The rule-based and ML approach applied in this study may be useful for the in silico design and screening of new AChE and BACE1 dual inhibitors against AzD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Acetilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Precursor de Proteína beta-Amiloide
10.
Mol Divers ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017875

RESUMO

Ubiquitin-proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. The UPS is involved in different biological activities, such as the regulation of gene transcription and cell cycle. Several researchers have applied cheminformatics and artificial intelligence methods to study the inhibition of proteasomes, including the prediction of UPP inhibitors. Following this idea, we applied a new tool for obtaining molecular descriptors (MDs) for modeling proteasome Inhibition in terms of EC50 (µmol/L), in which a set of new MDs called atomic weighted vectors (AWV) and several prediction algorithms were used in cheminformatics studies. In the manuscript, a set of descriptors based on AWV are presented as datasets for training different machine learning techniques, such as linear regression, multiple linear regression (MLR), random forest (RF), K-nearest neighbors (IBK), multi-layer perceptron, best-first search, and genetic algorithm. The results suggest that these atomic descriptors allow adequate modeling of proteasome inhibitors despite artificial intelligence techniques, as a variant to build efficient models for the prediction of inhibitory activity.

11.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985414

RESUMO

Although heterogeneous photocatalysis has shown promising results in degradation of contaminants of emerging concern (CECs), the mechanistic implications related to structural diversity of chemicals, affecting oxidative (by HO•) or reductive (by O2•-) degradation pathways are still scarce. In this study, the degradation extents and rates of selected organics in the absence and presence of common scavengers for reactive oxygen species (ROS) generated during photocatalytic treatment were determined. The obtained values were then brought into correlation as K coefficients (MHO•/MO2•-), denoting the ratio of organics degraded by two occurring mechanisms: oxidation and reduction via HO• and O2•-. The compounds possessing K >> 1 favor oxidative degradation over HO•, and vice versa for reductive degradation (i.e., if K << 1 compounds undergo reductive reactions driven by O2•-). Such empirical values were brought into correlation with structural features of CECs, represented by molecular descriptors, employing a quantitative structure activity/property relationship (QSA/PR) modeling. The functional stability and predictive power of the resulting QSA/PR model was confirmed by internal and external cross-validation. The most influential descriptors were found to be the size of the molecule and presence/absence of particular molecular fragments such as C - O and C - Cl bonds; the latter favors HO•-driven reaction, while the former the reductive pathway. The developed QSA/PR models can be considered robust predictive tools for evaluating distribution between degradation mechanisms occurring in photocatalytic treatment.

12.
Nat Prod Res ; 37(10): 1709-1713, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35879860

RESUMO

This study reports the isolation of iridoids and cycloartane glycosides from the aerial parts of Phlomoides labiosa Bunge. Six compounds were isolated and the chemical structures were identified as phlorigidoside С (1), 8-O-acetylharpagide (2), shanzhiside methyl ester (3), cyclosiversioside A (4), cyclosiversioside E (5), and cyclosiversioside C (6). Compounds 4-6 are reported for the first time in this plant. In addition, anti-inflammatory and analgesic activities of iridoid fraction were studied. The sum of iridoids (SI) with intragastric administration is 5.2 and 52.5 times less toxic, than such market drugs as analgin and diclofenac sodium, respectively. In terms of the latitude of analgesic action (LD50/ED50), the SI exceeds analgin by 19.2 times and diclofenac sodium by 16 times. The anti-inflammatory and analgesic activities of the sum of iridoids were confirmed to be effective and nontoxic, and exceed known drugs diclofenac sodium and analgin (metamizole sodium).


Assuntos
Iridoides , Lamiaceae , Iridoides/farmacologia , Iridoides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Dipirona , Diclofenaco/farmacologia , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia
13.
Toxics ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548579

RESUMO

In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure-Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.

14.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296373

RESUMO

Human serum paraoxonase-1 (PON1) is an important hydrolase-type enzyme found in numerous tissues. Notably, it can exist in two isozyme-forms, Q and R, that exhibit different activities. This study presents an in silico (QSAR, Docking, MD and QM/MM) study of a set of compounds on the activity towards the PON1 isoenzymes (QPON1 and RPON1). Different rates of reaction for the Q and R isoenzymes were analyzed by modelling the effect of Q192R mutation on active sites. It was concluded that the Q192R mutation is not even close to the active site, while it is still changing the geometry of it. Using the combined genetic algorithm with multiple linear regression (GA-MLR) technique, several QSAR models were developed and relative activity rates of the isozymes of PON1 explained. From these, two QSAR models were selected, one each for the QPON1 and RPON1. Best selected models are four-variable MLR models for both Q and R isozymes with squared correlation coefficient R2 values of 0.87 and 0.83, respectively. In addition, the applicability domain of the models was analyzed based on the Williams plot. The results were discussed in the light of the main factors that influence the hydrolysis activity of the PON1 isozymes.


Assuntos
Arildialquilfosfatase , Isoenzimas , Humanos , Arildialquilfosfatase/genética , Hidrólise , Isoenzimas/genética , Modelos Lineares , Análise Multivariada
15.
Curr Comput Aided Drug Des ; 18(7): 469-479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177632

RESUMO

INTRODUCTION: This report proposes the application of a new Machine Learning algorithm called Fuzzy Unordered Rules Induction Algorithm (FURIA)-C in the classification of druglike compounds with antidiabetic inhibitory ability toward the main two pharmacological targets: α-amylase and α-glucosidase. METHODS: The two obtained QSAR models were tested for classification capability, achieving satisfactory accuracy scores of 94.5% and 96.5%, respectively. Another important outcome was to achieve various α-amylase and α-glucosidase fuzzy rules with high Certainty Factor values. Fuzzyrules derived from the training series and active classification rules were interpreted. An important external validation step, comparing our method with those previously reported, was also included. RESULTS: The Holm's test comparison showed significant differences (p-value<0.05) between FURIA-C, Linear Discriminating Analysis (LDA), and Bayesian Networks, the former beating the two latter according to the relative ranking score of the Holm's test. CONCLUSION: From these results, the FURIA-C algorithm could be used as a cutting-edge technique to predict (classify or screen) the α-amylase and α-glucosidase inhibitory activity of new compounds and hence speed up the discovery of new potent multi-target antidiabetic agents.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Amilases , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/metabolismo , alfa-Glucosidases , Relação Quantitativa Estrutura-Atividade , Teorema de Bayes , Hipoglicemiantes/farmacologia
16.
Mol Pharm ; 19(7): 2151-2163, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35671399

RESUMO

Antibacterial drugs (AD) change the metabolic status of bacteria, contributing to bacterial death. However, antibiotic resistance and the emergence of multidrug-resistant bacteria increase interest in understanding metabolic network (MN) mutations and the interaction of AD vs MN. In this study, we employed the IFPTML = Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) algorithm on a huge dataset from the ChEMBL database, which contains >155,000 AD assays vs >40 MNs of multiple bacteria species. We built a linear discriminant analysis (LDA) and 17 ML models centered on the linear index and based on atoms to predict antibacterial compounds. The IFPTML-LDA model presented the following results for the training subset: specificity (Sp) = 76% out of 70,000 cases, sensitivity (Sn) = 70%, and Accuracy (Acc) = 73%. The same model also presented the following results for the validation subsets: Sp = 76%, Sn = 70%, and Acc = 73.1%. Among the IFPTML nonlinear models, the k nearest neighbors (KNN) showed the best results with Sn = 99.2%, Sp = 95.5%, Acc = 97.4%, and Area Under Receiver Operating Characteristic (AUROC) = 0.998 in training sets. In the validation series, the Random Forest had the best results: Sn = 93.96% and Sp = 87.02% (AUROC = 0.945). The IFPTML linear and nonlinear models regarding the ADs vs MNs have good statistical parameters, and they could contribute toward finding new metabolic mutations in antibiotic resistance and reducing time/costs in antibacterial drug research.


Assuntos
Antibacterianos , Aprendizado de Máquina , Algoritmos , Antibacterianos/farmacologia , Bases de Dados Factuais , Redes e Vias Metabólicas
17.
J Phys Chem Lett ; 13(19): 4374-4380, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35544382

RESUMO

The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.


Assuntos
Ácidos Dicarboxílicos , Furanos , Biomassa , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Furanos/química , Simulação de Dinâmica Molecular , Fotólise , Água
18.
Comput Struct Biotechnol J ; 20: 913-924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242284

RESUMO

Fullerene derivatives (FDs) belong to a relatively new family of nano-sized organic compounds. They are widely applied in materials science, pharmaceutical industry, and (bio) medicine. This research focused on the study of FDs in terms of their potential inhibitory effect on therapeutic targets associated with diabetic disease, as well as analysis of protein-ligand binding in order to identify the key binding characteristics of FDs. Therapeutic drug compounds when entering the biological system usually inevitably encounter and interact with a vast variety of biomolecules that are responsible for many different functions in organisms. Protein biomolecules are the most important functional components and used in this study as target structures. The structures of proteins [(PDB ID: 1BMQ, 1FM6, 1GPB, 1H5U, 1US0)] belonging to the class of anti-diabetes targets were obtained from the Protein Data Bank (PDB). Protein binding activity data (binding scores) were calculated for the dataset of 169 FDs related to these five proteins. Subsequently, the resulting data were analyzed using various machine learning and cheminformatics methods, including artificial neural network algorithms for variable selection and property prediction. The Quantitative Structure-Activity Relationship (QSAR) models for prediction of binding scores activity were built up according to five Organization for Economic Co-operation and Development (OECD) principles. All the data obtained can provide important information for further potential use of FDs with different functional groups as promising medical antidiabetic agents. Binding scores activity can be used for ranking of FDs in terms of their inhibitory activity (pharmacological properties) and potential toxicity.

19.
ACS Appl Mater Interfaces ; 14(6): 8384-8393, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119263

RESUMO

Plant-based proteins are attractive components which may serve as sustainable alternatives to current petrochemical products. Both soy protein and major corn protein, zein, are of interest in food packaging applications due to their sustainability, biodegradation properties, and inherent physicochemical properties. This study discusses the development of bioplastic materials, where it explores the effects of combining zein, soy protein, and plasticizing latexes derived from plant oil-based monomers (POBMs) on properties of resulting bioplastic films. By looking for synergistic effects of soy protein's inherent film formation ability and zein's higher strength, we prepare strong yet flexible soy-zein films as materials, called proteoposites. Incorporation of natural additive POBM-latexes helps to plasticize and hydrophobize the bioplastic films and thus to improve mechanical and barrier properties. Variation of the POBM-latexes' particle size further aims to enhance the performance of resulting bioplastic films. As a result, modified soy-zein proteoposite films with improved moisture resistance, enhanced mechanical behavior, and greater barrier properties were developed. Machine learning-based computational models were utilized in order to find main structural factors affecting the bioplastic's properties and develop a quantitative structure-property relationship model between the physicochemical properties of the film components and the resulted bioplastics' properties and performance. The developed model effectively predicts experimental outcomes with >85% (R2: 0.85) accuracy. The newly synthesized proteoposites confirmed the machine learning model predictions. As a result, proteoposite films made of two plant proteins and modified with POBM-latexes can be considered as an attractive and viable replacement for petrochemical food packaging products.


Assuntos
Embalagem de Alimentos , Zeína , Látex , Aprendizado de Máquina , Proteínas de Plantas , Zeína/química
20.
ACS Omega ; 7(6): 4791-4803, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187299

RESUMO

The battle against the COVID-19 pandemic counters the waste management system, as billions of single-use face masks are used per day all over the world. Proper disposal of used face masks without jeopardizing the health and the environment is a challenge. Herein, a novel method for recycling of medical face masks has been studied. This method incorporates the nonwoven polypropylene (PP) fiber, which is taken off from the mask after disinfecting it, with acrylonitrile butadiene rubber (NBR) using maleic anhydride as the compatibilizer, which results in a PP-NBR blend with a high percentage economy. The PP-NBR blends show enhanced thermomechanical properties among which, 70 wt % PP content shows superior properties compared to other composites with 40, 50, and 60 wt % of PP. The fully Atomistic simulation of PP-NBR blend with compatibilizer shows an improved tensile and barrier properties, which is in good agreement with the experimental studies. The molecular dynamics simulation confirms that the compatibility between non-polar PP and polar NBR phases are vitally important for increasing the interfacial adhesion and impeding the phase separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA