Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 647: 123528, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37863449

RESUMO

In the contemporary era, microorganisms, spanning bacteria and viruses, are increasingly acknowledged as emerging contaminants in the environment, presenting significant risks to public health. Nevertheless, conventional methods for disinfecting these microorganisms are often ineffective. Additionally, they come with disadvantages such as high energy usage, negative environmental consequences, increased expenses, and the generation of harmful byproducts. The development of next-generation antifungal and antibacterial agents is dependent on newly synthesized nanomaterials with inherent antimicrobial behavior. In this study, we report an arc-discharge method to synthesize MoOx nanosheets and microbelts, followed by decorating them with ultrafine Ag nanoparticles (NPs). Scanning and transmission electron microscopies show that Ag NPs formation on the Molybdenum oxide nanostructures rolls them into nanotube caps (NTCs), revealing inner and outer diameters of approximately 19.8 nm and 105.5 nm, respectively. Additionally, the Ag NPs are ultrafine, with sizes in the range of 5-8 nm. Results show that the prepared NTCs exhibit dose-dependent sensitivity to both planktonic and biofilm cells of Escherichia coli and Candida albicans. The anti-biofilm activity in terms of biofilm inhibition ranged from 19.7 to 77.2% and 11.3-82.3%, while removal of more than 70% and 90% of preformed biofilms was achieved for E. coli and C. albicans, respectively, showing good potential for antimicrobial coating. Initial MoOx exhibits positive potential, while Ag-decorated Molybdenum oxide NTCs show dual potential effects (positive for Molybdenum oxide NTCs and negative for Ag NPs. Molybdenum oxide NTCs, with their strong positive potential, efficiently attract microbes due to their negatively charged cell surfaces, facilitating the antimicrobial effect of Ag NPs, leading to cell damage and death. These findings suggest that the synthesized NPs could serve as a suitable coating for biomedical applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanotubos , Nanopartículas Metálicas/química , Escherichia coli , Óxidos , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Sci Rep ; 13(1): 13497, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596360

RESUMO

The effect of moisture and heat are important challenges in perovskite solar cells (PSCs). Herein we studied the performance of triple-cation PSCs in different operating environmental conditions. Humidified cells exhibited a hopeful character by increasing the open-circuit voltage (VOC) and short-circuit current density (JSC) to 940 mV and 22.85 mA cm-2 with a power conversion efficiency (PCE) of 14.34%. In addition, further analyses showed that hysteresis index and charge transfer resistance decrease down to 0.4% and 1.67 kΩ. The origin of superior stability is ion segregation to the interface, which removes the antisite defect states. Finally, the effect of operating temperature and trap density on structure and performance was also studied systematically.

3.
iScience ; 25(2): 103712, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35098098

RESUMO

Most laboratories employ spin coating with application of antisolvent to achieve high efficiency in perovskite solar cells. However, this method wastes a lot of material and is not industrially usable. Conversely, large area coating techniques such as blade and slot-die require high precision engineering both for deposition of ink and for gas or for electromagnetic drying procedures that replace, out of necessity, anti-solvent engineering. Here we present a simple and effective method to deposit uniform high-quality perovskite films with a piece of paper as an applicator at low temperatures. We fabricated solar cells on flexible PET substrates manually with 11% power conversion efficiency. Deposition after soaking the sheet of paper in a green antisolvent improved the efficiency by 82% compared to when using dry paper as applicator. This new technique enables manual film deposition without any expensive equipment and has the potential to be fully automated for future optimization and exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA