Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 22(1): 107, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964548

RESUMO

BACKGROUND: For a country such as South Africa which is targeting malaria elimination, mobile and migrant populations pose a substantial risk to importation of malaria parasites. It has been hypothesized that halting cross-border movement of mobile and migrant populations will decrease the importation of malaria, however this option is not a politically, operationally, and financially viable prospect. It has social impacts as well, since families live on either side of the border and preventing travel will challenge family ties. Due to the COVID-19 pandemic and closure of ports of entry (land and air) for non-essential travel into South Africa, a unique opportunity arose to test the hypothesis. METHODOLOGY: An interrupted time series analysis was done to assess whether the post-lockdown trends (April-December 2020) in monthly reported imported and local cases differed from the pre-lockdown trends (January 2015-March 2020). The analysis was conducted separately for KwaZulu-Natal, Mpumalanga, and Limpopo provinces. RESULTS: On average, imported cases were lower in the post-intervention period in all three provinces, and local cases were lower in Mpumalanga and Limpopo, though no results were statistically significant. CONCLUSION: Since population movement continued after the travel restrictions were lifted, border screening with testing and treating should be considered for reducing parasite movement. Another option is reducing malaria cases at the source in neighbouring countries by implementing proven, effective vector and parasite control strategies and through a downstream effect reduce malaria entering South Africa.


Assuntos
COVID-19 , Malária , Humanos , Controle de Doenças Transmissíveis , África do Sul/epidemiologia , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Malária/epidemiologia , Malária/prevenção & controle
2.
Malar J ; 15(1): 438, 2016 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-27567642

RESUMO

BACKGROUND: With a sustained national malaria incidence of fewer than one case per 1000 population at risk, in 2012 South Africa officially transitioned from controlling malaria to the ambitious goal of eliminating malaria within its borders by 2018. This review assesses the progress made in the 3 years since programme re-orientation while highlighting challenges and suggesting priorities for moving the malaria programme towards elimination. METHODS: National malaria case data and annual spray coverage data from 2010 until 2014 were assessed for trends. Information on surveillance, monitoring and evaluation systems, human and infrastructure needs and community malaria knowledge was sourced from the national programme mid-term review. RESULTS: Malaria cases increased markedly from 6811 in 2013 to 11,711 in 2014, with Mpumalanga and Limpopo provinces most affected. Enhanced local transmission appeared to drive malaria transmission in Limpopo Province, while imported malaria cases accounted for the majority of cases reported in Mpumalanga Province. Despite these increases only Vhembe and Mopani districts in Limpopo Province reported malaria incidences more than one case per 1000 population at risk by 2014. Over the review period annual spray coverage did not reach the recommended target of 90 % coverage, with information gaps identified in parasite prevalence, artemether-lumefantrine therapeutic utilization, asymptomatic/sub-patent carriage, drug efficacy, vector distribution and insecticide resistance. CONCLUSIONS: Although South Africa has made steady progress since adopting an elimination agenda, a number of challenges have been identified. The heterogeneity of malaria transmission suggests interventions in Vhembe and Mopani districts should focus on control, while in KwaZulu-Natal Province eliminating transmission foci should be prioritized. Cross-border initiatives with neighbouring countries should be established/strengthened as a matter of urgency since malaria importation poses a real threat to the country's elimination efforts. It is also critical that provincial programmes are adequately resourced to effectively conduct the necessary targeted elimination activities, informed by current vector/parasite distribution and resistance data. More sensitive methods to detect sub-patent infections, primaquine as a transmission-blocking drug, and alternative vector control methods need to be investigated. Knowledge gaps among malaria health workers and affected communities should be identified and addressed.


Assuntos
Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Erradicação de Doenças/métodos , Erradicação de Doenças/organização & administração , Malária/epidemiologia , Malária/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Malária/diagnóstico , Malária/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , África do Sul/epidemiologia , Adulto Jovem
3.
Malar J ; 11: 423, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23253091

RESUMO

BACKGROUND: Following the last major malaria epidemic in 2000, malaria incidence in South Africa has declined markedly. The decrease has been so emphatic that South Africa now meets the World Health Organization (WHO) threshold for malaria elimination. Given the Millennium Development Goal of reversing the spread of malaria by 2015, South Africa is being urged to adopt an elimination agenda. This study aimed to determine the appropriateness of implementing a malaria elimination programme in present day South Africa. METHODS: An assessment of the progress made by South Africa in terms of implementing an integrated malaria control programme across the three malaria-endemic provinces was undertaken. Vector control and case management data were analysed from the period of 2000 until 2011. RESULTS: Both malaria-related morbidity and mortality have decreased significantly across all three malaria-endemic provinces since 2000. The greatest decline was seen in KwaZulu-Natal where cases decreased from 42,276 in 2000 to 380 in 2010 and deaths dropped from 122 in 2000 to six in 2010. Although there has been a 49.2 % (8,553 vs 4,214) decrease in the malaria cases reported in Limpopo Province, currently it is the largest contributor to the malaria incidence in South Africa. Despite all three provinces reporting average insecticide spray coverage of over 80%, malaria incidence in both Mpumalanga and Limpopo remains above the elimination threshold. Locally transmitted case numbers have declined in all three malaria provinces but imported case numbers have been increasing. Knowledge gaps in vector distribution, insecticide resistance status and drug usage were also identified. CONCLUSIONS: Malaria elimination in South Africa is a realistic possibility if certain criteria are met. Firstly, there must be continued support for the existing malaria control programmes to ensure the gains made are sustained. Secondly, cross border malaria control initiatives with neighbouring countries must be strongly encouraged and supported to reduce malaria in the region and the importation of malaria into South Africa. Thirdly, operational research, particularly on vector distribution and insecticide resistance status must be conducted as a matter of urgency, and finally, the surveillance systems must be refined to ensure the information required to inform an elimination agenda are routinely collected.


Assuntos
Malária/prevenção & controle , Animais , Resistência a Medicamentos/genética , Epidemias , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Resistência a Inseticidas , Inseticidas/administração & dosagem , Malária/epidemiologia , Malária/parasitologia , Controle de Mosquitos , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Prática de Saúde Pública , África do Sul/epidemiologia
4.
Malar J ; 11: 434, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23272998

RESUMO

BACKGROUND: Recent malaria epidemics in KwaZulu-Natal indicate that effective anti-malarial therapy is essential for malaria control. Although artemether-lumefantrine has been used as first-line treatment for uncomplicated Plasmodium falciparum malaria in northern KwaZulu-Natal since 2001, its efficacy has not been assessed since 2002. The objectives of this study were to quantify the proportion of patients treated for uncomplicated P. falciparum malaria with artemether-lumefantrine who failed treatment after 28 days, and to determine the prevalence of molecular markers associated with artemether-lumefantrine and chloroquine resistance. METHODS: An observational cohort of 49 symptomatic patients, diagnosed with uncomplicated P. falciparum malaria by rapid diagnostic test, had blood taken for malaria blood films and P. falciparum DNA polymerase chain reaction (PCR). Following diagnosis, patients were treated with artemether-lumefantrine (Coartem®) and invited to return to the health facility after 28 days for repeat blood film and PCR. All PCR P. falciparum positive samples were analysed for molecular markers of lumefantrine and chloroquine resistance. RESULTS: Of 49 patients recruited on the basis of a positive rapid diagnostic test, only 16 were confirmed to have P. falciparum by PCR. At follow-up, 14 were PCR-negative for malaria, one was lost to follow-up and one blood specimen had insufficient blood for a PCR analysis. All 16 with PCR-confirmed malaria carried a single copy of the multi-drug resistant (mdr1) gene, and the wild type asparagine allele mdr1 codon 86 (mdr1 86N). Ten of the 16 samples carried the wild type haplotype (CVMNK) at codons 72-76 of the chloroquine resistance transporter gene (pfcrt); three samples carried the resistant CVIET allele; one carried both the resistant and wild type, and in two samples the allele could not be analysed. CONCLUSIONS: The absence of mdr1 gene copy number variation detected in this study suggests lumefantrine resistance has yet to emerge in KwaZulu-Natal. In addition, data from this investigation implies the possible re-emergence of chloroquine-sensitive parasites. Results from this study must be viewed with caution, given the extremely small sample size. A larger study is needed to accurately determine therapeutic efficacy of artemether-lumefantrine and resistance marker prevalence. The high proportion of rapid diagnostic test false-positive results requires further investigation.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Etanolaminas/administração & dosagem , Fluorenos/administração & dosagem , Malária Falciparum/tratamento farmacológico , Adolescente , Adulto , Idoso , Combinação Arteméter e Lumefantrina , Criança , Pré-Escolar , Estudos de Coortes , Combinação de Medicamentos , Resistência a Medicamentos/genética , Feminino , Dosagem de Genes , Genes de Protozoários , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , África do Sul , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA