Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunol Methods ; 430: 1-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26779831

RESUMO

Neutralizing anti-drug antibodies (NAbs) against therapeutic interferon beta (IFNß) in people with multiple sclerosis (MS) are measured with cell-based bioassays. The aim of this study was to redevelop and validate two luciferase reporter-gene bioassays, LUC and iLite, using a cut-point approach to identify NAb positive samples. Such an approach is favored by the pharmaceutical industry and governmental regulatory agencies as it has a clear statistical basis and overcomes the limitations of the current assays based on the Kawade principle. The work was conducted following the latest assay guidelines. The assays were re-developed and validated as part of the "Anti-Biopharmaceutical Immunization: Prediction and analysis of clinical relevance to minimize the risk" (ABIRISK) consortium and involved a joint collaboration between four academic laboratories and two pharmaceutical companies. The LUC assay was validated at Innsbruck Medical University (LUCIMU) and at Rigshospitalet (LUCRH) Copenhagen, and the iLite assay at Karolinska Institutet, Stockholm. For both assays, the optimal serum sample concentration in relation to sensitivity and recovery was 2.5% (v/v) in assay media. A Shapiro-Wilk test indicated a normal distribution for the majority of runs, allowing a parametric approach for cut-point calculation to be used, where NAb positive samples could be identified with 95% confidence. An analysis of means and variances indicated that a floating cut-point should be used for all assays. The assays demonstrated acceptable sensitivity for being cell-based assays, with a confirmed limit of detection in neat serum of 1519 ng/mL for LUCIMU, 814 ng/mL for LUCRH, and 320 ng/mL for iLite. Use of the validated cut-point assay, in comparison with the previously used Kawade method, identified 14% more NAb positive samples. In conclusion, implementation of the cut-point design resulted in increased sensitivity to detect NAbs. However, the clinical significance of these low positive titers needs to be further evaluated.


Assuntos
Anticorpos Neutralizantes/sangue , Genes Reporter , Interferon beta/imunologia , Bioensaio , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Luciferases , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Testes de Neutralização , Sensibilidade e Especificidade
2.
Autoimmun Rev ; 14(7): 569-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25742758

RESUMO

All protein drugs (biologicals) have an immunogenic potential and we are armed with multiple guidelines, regulatory documents and white papers to assist us in assessing the level of risk for unwanted immunogenicity of new biologicals. However, for certain biologicals, significant immunogenicity becomes only apparent after their use in patients. Causes of immunogenicity are multifactorial but not yet fully understood. Within the pharmaceutical industry there are only a few opportunities to openly discuss the causes and consequences of immunogenicity with regard to the development of new biologicals. The annual Open Scientific Symposium of the European Immunogenicity Platform (EIP) is one such meeting that brings together scientists and clinicians from academia and industry to build know-how and expertise in the field of immunogenicity. The critical topics discussed at the last EIP meeting (February 2014) will be reviewed here. The current opinion of this expert group is that the assessment of unwanted immunogenicity can be improved by using prediction tools, optimizing the performance of immunogenicity assays and learning from the clinical impact of other biologicals that have already been administered to patients. A multidisciplinary approach is warranted to better understand and minimize drug immunogenicity and its clinical consequences.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos , Descoberta de Drogas , Hipersensibilidade a Drogas , Humanos , Fenômenos Imunogenéticos , Modelos Animais
3.
PLoS One ; 7(7): e41823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860017

RESUMO

The multiligand Receptor for Advanced Glycation End products (RAGE) is involved in various pathophysiological processes, including diabetic inflammatory conditions and Alzheimers disease. Full-length RAGE, a cell surface-located type I membrane protein, can proteolytically be converted by metalloproteinases ADAM10 and MMP9 into a soluble RAGE form. Moreover, administration of recombinant soluble RAGE suppresses activation of cell surface-located RAGE by trapping RAGE ligands. Therefore stimulation of RAGE shedding might have a therapeutic value regarding inflammatory diseases. We aimed to investigate whether RAGE shedding is inducible via ligand-induced activation of G protein-coupled receptors (GPCRs). We chose three different GPCRs coupled to distinct signaling cascades: the V2 vasopressin receptor (V2R) activating adenylyl cyclase, the oxytocin receptor (OTR) linked to phospholipase Cß, and the PACAP receptor (subtype PAC1) coupled to adenylyl cyclase, phospholipase Cß, calcium signaling and MAP kinases. We generated HEK cell lines stably coexpressing an individual GPCR and full-length RAGE and then investigated GPCR ligand-induced activation of RAGE shedding. We found metalloproteinase-mediated RAGE shedding on the cell surface to be inducible via ligand-specific activation of all analyzed GPCRs. By using specific inhibitors we have identified Ca(2+) signaling, PKCα/PKCßI, CaMKII, PI3 kinases and MAP kinases to be involved in PAC1 receptor-induced RAGE shedding. We detected an induction of calcium signaling in all our cell lines coexpressing RAGE and different GPCRs after agonist treatment. However, we did not disclose a contribution of adenylyl cyclase in RAGE shedding induction. Furthermore, by using a selective metalloproteinase inhibitor and siRNA-mediated knock-down approaches, we show that ADAM10 and/or MMP9 are playing important roles in constitutive and PACAP-induced RAGE shedding. We also found that treatment of mice with PACAP increases the amount of soluble RAGE in the mouse lung. Our findings suggest that pharmacological stimulation of RAGE shedding might open alternative treatment strategies for Alzheimers disease and diabetes-induced inflammation.


Assuntos
Receptores Imunológicos/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Vasopressinas/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Proteína ADAM17 , Adenilil Ciclases/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dipeptídeos/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ácidos Hidroxâmicos/farmacologia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Inibidores de Proteases/farmacologia , Proteólise , Interferência de RNA , Receptor para Produtos Finais de Glicação Avançada
4.
FASEB J ; 25(9): 3208-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21593432

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent α-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal daily PACAP application stimulated the nonamyloidogenic processing of amyloid precursor protein (APP) and increased expression of the brain-derived neurotrophic factor and of the antiapoptotic Bcl-2 protein. In addition, it caused a strong reduction of the amyloid ß-peptide (Aß) transporter receptor for advanced glycation end products (RAGE) mRNA level. PACAP, by activation of the somatostatin-neprilysin cascade, also enhanced expression of the Aß-degrading enzyme neprilysin in the mouse brain. Furthermore, daily PAC1-receptor activation via PACAP resulted in an increased mRNA level of both the PAC1 receptor and its ligand PACAP. Our behavioral studies showed that long-term PACAP treatment of APP[V717I]-transgenic mice improved cognitive function in animals. Thus, nasal application of PACAP was effective, and our results indicate that PACAP could be of therapeutic value in treating AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Administração Intranasal , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neprilisina/genética , Neprilisina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
5.
J Alzheimers Dis ; 20(4): 1215-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20413873

RESUMO

Cholesterol-lowering drugs such as statins influence the proteolytic processing of the amyloid-beta protein precursor (AbetaPP) and are reported to stimulate the activity of alpha-secretase, the major preventive secretase of Alzheimer's disease. Statins can increase the alpha-secretase activity by their cholesterol-lowering properties as well as by impairment of isoprenoids synthesis. In the present study, we elucidate the contribution of these pathways in alpha-secretase activation. We demonstrate that zaragozic acid, a potent inhibitor of squalene synthase which blocks cholesterol synthesis but allows synthesis of isoprenoids, also stimulates alpha-secretase activity. Treatment of human neuroblastoma cells with 50 microM zaragozic acid resulted in a approximately 3 fold increase of alpha-secretase activity and reduced cellular cholesterol by approximately 30%. These effects were comparable to results obtained from cells treated with a low lovastatin concentration (2 microM). Zaragozic acid-stimulated secretion of alpha-secretase-cleaved soluble AbetaPP was dose dependent and saturable. Lovastatin- or zaragozic acid-stimulated increase of alpha-secretase activity was completely abolished by a selective ADAM10 inhibitor. By targeting the alpha-secretase ADAM10 to lipid raft domains via a glycosylphosphatidylinositol anchor, we demonstrate that ADAM10 is unable to cleave AbetaPP in a cholesterol-rich environment. Our results indicate that inhibition of cholesterol biosynthesis by a low lovastatin concentration is sufficient for alpha-secretase activation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Anticolesterolemiantes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Colesterol/biossíntese , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ácidos Tricarboxílicos/farmacologia , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Lovastatina/farmacologia , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Interferente Pequeno/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Terpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA