Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 96(14): e0185121, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862673

RESUMO

A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.


Assuntos
Proteína gp120 do Envelope de HIV , HIV-1 , Internalização do Vírus , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Maraviroc/farmacologia , Polimorfismo Genético , Ligação Proteica
2.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177204

RESUMO

Exposure of the genital mucosa to a genetically diverse viral swarm from the donor HIV-1 can result in breakthrough and systemic infection by a single transmitted/founder (TF) virus in the recipient. The highly diverse HIV-1 envelope (Env) in this inoculating viral swarm may have a critical role in transmission and subsequent immune response. Thus, chronic (Envchronic) and acute (Envacute) Env chimeric HIV-1 were tested using multivirus competition assays in human mucosal penile and cervical tissues. Viral competition analysis revealed that Envchronic viruses resided and replicated mainly in the tissue, while Envacute viruses penetrated the human tissue and established infection of CD4+ T cells more efficiently. Analysis of the replication fitness, as tested in peripheral blood mononuclear cells (PBMCs), showed similar replication fitness of Envacute and Envchronic viruses, which did not correlate with transmission fitness in penile tissue. Further, we observed that chimeric Env viruses with higher replication in genital mucosal tissue (chronic Env viruses) had higher binding affinity to C-type lectins. Data presented herein suggest that the inoculating HIV-1 may be sequestered in the genital mucosal tissue (represented by chronic Env HIV-1) but that a single HIV-1 clone (e.g., acute Env HIV-1) can escape this trapped replication for systemic infection.IMPORTANCE During heterosexual HIV-1 transmission, a genetic bottleneck occurs in the newly infected individual as the virus passes from the mucosa, leading to systemic infection with a single transmitted HIV-1 clone in the recipient. This bottleneck in the recipient has just been described (K. Klein et al., PLoS Pathog 14:e1006754, https://doi.org/10.1371/journal.ppat.1006754), and the mechanisms involved in this selection process have not been elucidated. However, understanding mucosal restriction is of the utmost importance for understanding dynamics of infections and for designing focused vaccines. Using our human penile and cervical mucosal tissue models for mixed HIV infections, we provide evidence that HIV-1 from acute/early infection, compared to that from chronic infection, can more efficiently traverse the mucosal epithelium and be transmitted to T cells, suggesting higher transmission fitness. This study focused on the role of the HIV-1 envelope in transmission and provides strong evidence that HIV transmission may involve breaking the mucosal lectin trap.


Assuntos
Colo do Útero/virologia , Infecções por HIV/transmissão , HIV-1/genética , Leucócitos Mononucleares/virologia , Mucosa/virologia , Pênis/virologia , Proteínas Virais/genética , Feminino , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , RNA Viral/análise , RNA Viral/genética
3.
Retrovirology ; 14(1): 45, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962653

RESUMO

BACKGROUND: Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. RESULTS: Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. CONCLUSIONS: Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral/fisiologia , Antivirais/farmacologia , Linhagem Celular Tumoral , Cromatografia de Afinidade , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Regulação Enzimológica da Expressão Gênica , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Proteômica , Pirimidinas/farmacologia , Interferência de RNA , Processamento Pós-Transcricional do RNA , Sefarose/química , Tiofenos/farmacologia , Vírion/fisiologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
4.
Cell Chem Biol ; 23(6): 678-88, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27265747

RESUMO

Many tumors are dependent on de novo fatty acid synthesis to maintain cell growth. Fatty acid synthase (FASN) catalyzes the final synthetic step of this pathway, and its upregulation is correlated with tumor aggressiveness. The consequences and adaptive responses of acute or chronic inhibition of essential enzymes such as FASN are not fully understood. Herein we identify Fasnall, a thiophenopyrimidine selectively targeting FASN through its co-factor binding sites. Global lipidomics studies with Fasnall showed profound changes in cellular lipid profiles, sharply increasing ceramides, diacylglycerols, and unsaturated fatty acids as well as increasing exogenous palmitate uptake that is deviated more into neutral lipid formation rather than phospholipids. We also showed that the increase in ceramide levels contributes to some extent in the mediation of apoptosis. Consistent with this mechanism of action, Fasnall showed potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer, particularly when combined with carboplatin.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Humanos , Injeções Intraperitoneais , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Pirimidinas/administração & dosagem , Pirimidinas/química , Receptor ErbB-2/metabolismo , Suínos , Tiofenos/administração & dosagem , Tiofenos/química
5.
AIDS Res Hum Retroviruses ; 32(7): 676-88, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26861573

RESUMO

Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A-K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC50 values than group M HIV-1. The mean IC50 values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors.


Assuntos
Antirretrovirais/farmacologia , Farmacorresistência Viral , Genótipo , HIV-1/genética , HIV-1/fisiologia , Fenótipo , Células Cultivadas , HIV-1/classificação , HIV-1/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Replicação Viral
6.
Antimicrob Agents Chemother ; 57(6): 2640-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529732

RESUMO

Small-molecule CCR5 antagonists, such as maraviroc (MVC), likely block HIV-1 through an allosteric, noncompetitive inhibition mechanism, whereas inhibition by agonists such as PSC-RANTES is less defined and may involve receptor removal by cell surface downregulation, competitive inhibition by occluding the HIV-1 envelope binding, and/or allosteric effects by altering CCR5 conformation. We explored the inhibitory mechanisms of maraviroc and PSC-RANTES by employing pairs of virus clones with differential sensitivities to these inhibitors. Intrinsic PSC-RANTES-resistant virus (YA versus RT) or those selected in PSC-RANTES treated macaques (M584 versus P3-4) only displayed resistance in multiple-cycle assays or with a CCR5 mutant that cannot be downregulated. In single-cycle assays, these HIV-1 clones displayed equal sensitivity to PSC-RANTES inhibition, suggesting effective receptor downregulation. Prolonged PSC-RANTES exposure resulted in desensitization of the receptor to internalization such that increasing virus concentration (substrate) could saturate the receptors and overcome PSC-RANTES inhibition. In contrast, resistance to MVC was observed with the MVC-resistant HIV-1 (R3 versus S2) in both multiple- and single-cycle assays and with altered virus concentrations, which is indicative of allosteric inhibition. MVC could also mediate inhibition and possibly resistance through competitive mechanisms.


Assuntos
Fármacos Anti-HIV/farmacologia , Antagonistas dos Receptores CCR5 , Quimiocina CCL5/farmacologia , Cicloexanos/farmacologia , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Triazóis/farmacologia , Animais , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Quimiocina CCL5/metabolismo , Quimiocina CCL5/uso terapêutico , Cicloexanos/metabolismo , Cicloexanos/uso terapêutico , Regulação para Baixo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Macaca , Maraviroc , Testes de Sensibilidade Microbiana/métodos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Triazóis/metabolismo , Triazóis/uso terapêutico , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
7.
J Virol ; 87(2): 923-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135713

RESUMO

Maraviroc (MVC) is a CCR5 antagonist that inhibits HIV-1 entry by binding to the coreceptor and inducing structural alterations in the extracellular loops. In this study, we isolated MVC-resistant variants from an HIV-1 primary isolate that arose after 21 weeks of tissue culture passage in the presence of inhibitor. gp120 sequences from passage control and MVC-resistant cultures were cloned into NL4-3 via yeast-based recombination followed by sequencing and drug susceptibility testing. Using 140 clones, three mutations were linked to MVC resistance, but none appeared in the V3 loop as was the case with previous HIV-1 strains resistant to CCR5 antagonists. Rather, resistance was dependent upon a single mutation in the C4 region of gp120. Chimeric clones bearing this N425K mutation replicated at high MVC concentrations and displayed significant shifts in 50% inhibitory concentrations (IC(50)s), characteristic of resistance to all other antiretroviral drugs but not typical of MVC resistance. Previous reports on MVC resistance describe an ability to use a drug-bound form of the receptor, leading to reduction in maximal drug inhibition. In contrast, our structural models on K425 gp120 suggest that this resistant mutation impacts CD4 interactions and highlights a novel pathway for MVC resistance.


Assuntos
Fármacos Anti-HIV/farmacologia , Cicloexanos/farmacologia , Farmacorresistência Viral , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação de Sentido Incorreto , Triazóis/farmacologia , Análise Mutacional de DNA , HIV-1/isolamento & purificação , Humanos , Maraviroc , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Análise de Sequência de DNA , Inoculações Seriadas , Cultura de Vírus
8.
Antimicrob Agents Chemother ; 56(5): 2719-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22330918

RESUMO

Hypersusceptibility (HS) to inhibition by different antiretroviral drugs (ARVs) among diverse HIV-infected individuals may be a misnomer because clinical response to treatment is evaluated in relation to subtype B infections while drug susceptibility of the infecting virus, regardless of subtype, is compared to a subtype B HIV-1 laboratory strain (NL4-3 or IIIB). Mounting evidence suggests that HS to different ARVs may result in better treatment outcome just as drug resistance leads to treatment failure. We have identified key amino acid polymorphisms in the protease coding region of a non-B HIV-1 subtype linked to protease inhibitor HS, namely, 17E and 64M in CRF02_AG. These HS-linked polymorphisms were introduced in the BD6-15 CRF02_AG molecular clone and tested for inhibition using a panel of protease inhibitors. In general, suspected HS-linked polymorphisms did increase susceptibility to specific protease inhibitors such as amprenavir and atazanavir, but the combination of the 17E/64M polymorphisms showed greater HS. These two mutations were found at low frequencies but linked in a sequence database of over 700 protease sequences of CRF02_AG. In direct head-to-head virus competitions, CRF02_AG harboring the 17E/64M polymorphisms also had higher replicative fitness than did the 17E or the 64M polymorphism in the CFR02_AG clone. These findings suggest that subtype-specific, linked polymorphisms can result in hypersusceptibility to ARVs. Considering the potential benefit of HS to treatment outcome, screening for potential HS-linked polymorphisms as well as preexisting drug resistance mutations in treatment-naïve patients may guide the choice of ARVs for the best treatment outcome.


Assuntos
Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , Polimorfismo Genético , Substituição de Aminoácidos , Sulfato de Atazanavir , Carbamatos/farmacologia , Farmacorresistência Viral/genética , Furanos , Células HEK293 , HIV-1/enzimologia , HIV-1/genética , Humanos , Mutação , Oligopeptídeos/farmacologia , Fases de Leitura Aberta , Plasmídeos , Piridinas/farmacologia , Sulfonamidas/farmacologia , Transfecção
9.
PLoS Pathog ; 7(5): e1002038, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625572

RESUMO

The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50) ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (-) strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.


Assuntos
Fármacos Anti-HIV/farmacologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Transcrição Reversa/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica , Regulação Viral da Expressão Gênica , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/virologia , Peptídeos Cíclicos/metabolismo , RNA Viral/genética , Ativação Transcricional/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
10.
Viruses ; 2(5): 1069-1105, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-21994672

RESUMO

Entry inhibitors represent a new class of antiretroviral agents for the treatment of infection with HIV-1. While resistance to other HIV drug classes has been well described, resistance to this new class is still ill defined despite considerable clinical use. Several potential mechanisms have been proposed: tropism switching (utilization of CXCR4 instead of CCR5 for entry), increased affinity for the coreceptor, increased rate of virus entry into host cells, and utilization of inhibitor-bound receptor for entry. In this review we will address the development of attachment, fusion, and coreceptor entry inhibitors and explore recent studies describing potential mechanisms of resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA