Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Anat Rec (Hoboken) ; 302(2): 346-363, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30412359

RESUMO

There is currently much interest in understanding the mechanisms of normal and aberrant lung alveolarization, particularly in the context of bronchopulmonary dysplasia, a common complication of preterm birth where alveolarization is impeded. To this end, the parenteral administration of pharmacological agents that modulate biochemical pathways, or facilitate modulation of gene expression in transgenic animals, has facilitated the discovery and validation of mechanisms that direct lung development. Such studies include control interventions, where the solvent vehicle, perhaps containing an inactive form of the agent applied, is administered; thereby providing a well-controlled point of reference for the analysis of the partner experiment. In the present study, the impact of several widely used control interventions in developing C57Bl/6J mouse pups was examined for effects on lung structure and the lung transcriptome. Parenteral administration of scrambled microRNA inhibitors (called antagomiRs) that are used to control in vivo microRNA neutralization studies, impacted lung volume, septal thickness, and the transcriptome of developing mouse lungs; with some effects dependent upon nucleotide sequence. Repeated intraperitoneal isotonic saline injections altered lung volume, with limited impact on the transcriptome. Parenteral administration of the tamoxifen solvent Miglyol accelerated mouse pup growth, and changed the abundance of 73 mRNA transcripts in the lung. Tamoxifen applied in Miglyol-in the absence of Cre recombinase-decreased pup growth, lung volume, and lung alveolarization and changed the abundance of 298 mRNA transcripts in the lung. These data demonstrate that widely used control interventions can directly impact lung alveolarization and the lung transcriptome in studies on lung development. Anat Rec, 302:346-363, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , MicroRNAs/antagonistas & inibidores , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Transcriptoma , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Organogênese
3.
J Anat ; 232(3): 472-484, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315540

RESUMO

The quantitative assessment of the lung architecture forms the foundation of many studies on lung development and lung diseases, where parameters such as alveoli number, alveolar size, and septal thickness are quantitatively influenced by developmental or pathological processes. Given the pressing need for robust data that describe the lung structure, there is currently much enthusiasm for the development and refinement of methodological approaches for the unbiased assessment of lung structure with improved precision. The advent of stereological methods highlights one such approach. However, design-based stereology is both expensive and time-demanding. The objective of this study was to examine whether 'limited' stereological analysis, such as the stereological analysis of a single mouse lung lobe, may serve as a surrogate for studies on whole, intact mouse lungs; both in healthy lungs and in diseased lungs, using an experimental animal model of bronchopulmonary dysplasia (BPD). This served the dual-function of exploring BPD pathobiology, asking whether there are regional (lobar) differences in the responses of developing mouse lungs to oxygen injury, by examining each mouse lung lobe separately in the BPD model. Hyperoxia exposure resulted in decreased alveolar density, alveoli number, and gas-exchange surface area in all five mouse lung lobes, and increased the arithmetic mean septal thickness in all mouse lung lobes except the lobus cardialis. The data presented here suggest that - in healthy developing mice - a single mouse lung lobe might serve as a surrogate for studies on whole, intact mouse lungs. This is not the case for oxygen-injured developing mouse lungs, where a single lobe would not be suitable as a surrogate for the whole, intact lung. Furthermore, as the total number of alveoli can only be determined by an analysis of the entire lung, and given regional differences in lung structure, particularly under pathological conditions, the stereological assessment of the whole, intact lung remains desirable.


Assuntos
Displasia Broncopulmonar/patologia , Processamento de Imagem Assistida por Computador/métodos , Pulmão/anatomia & histologia , Modelos Animais , Alvéolos Pulmonares/anatomia & histologia , Animais , Camundongos
5.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L882-L895, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314804

RESUMO

Postnatal lung maturation generates a large number of small alveoli, with concomitant thinning of alveolar septal walls, generating a large gas exchange surface area but minimizing the distance traversed by the gases. This demand for a large and thin gas exchange surface area is not met in disorders of lung development, such as bronchopulmonary dysplasia (BPD) histopathologically characterized by fewer, larger alveoli and thickened alveolar septal walls. Diseases such as BPD are often modeled in the laboratory mouse to better understand disease pathogenesis or to develop new interventional approaches. To date, there have been no stereology-based longitudinal studies on postnatal mouse lung development that report dynamic changes in alveoli number or alveolar septal wall thickness during lung maturation. To this end, changes in lung structure were quantified over the first 22 mo of postnatal life of C57BL/6J mice. Alveolar density peaked at postnatal day (P)39 and remained unchanged at 9 mo (P274) but was reduced by 22 mo (P669). Alveoli continued to be generated, initially at an accelerated rate between P5 and P14, and at a slower rate thereafter. Between P274 and P669, loss of alveoli was noted, without any reduction in lung volume. A progressive thinning of the alveolar septal wall was noted between P5 and P28. Pronounced sex differences were observed in alveoli number in adult (but not juvenile) mice, when comparing male and female mouse lungs. This sex difference was attributed exclusively to the larger volume of male mouse lungs.


Assuntos
Envelhecimento/fisiologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tamanho do Órgão , Alvéolos Pulmonares/anatomia & histologia , Caracteres Sexuais
6.
Pediatr Res ; 81(5): 795-805, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28141790

RESUMO

BACKGROUND: Caffeine is widely used to manage apnea of prematurity, and reduces the incidence of bronchopulmonary dysplasia (BPD). Deregulated transforming growth factor (TGF)-ß signaling underlies arrested postnatal lung maturation in BPD. It is unclear whether caffeine impacts TGF-ß signaling or postnatal lung development in affected lungs. METHODS: The impact of caffeine on TGF-ß signaling in primary mouse lung fibroblasts and alveolar epithelial type II cells was assessed in vitro. The effects of caffeine administration (25 mg/kg/d for the first 14 d of postnatal life) on aberrant lung development and TGF-ß signaling in vivo was assessed in a hyperoxia (85% O2)-based model of BPD in C57BL/6 mice. RESULTS: Caffeine downregulated expression of type I and type III TGF-ß receptors, and Smad2; and potentiated TGF-ß signaling in vitro. In vivo, caffeine administration normalized body mass under hyperoxic conditions, and normalized Smad2 phosphorylation detected in lung homogenates; however, caffeine administration neither improved nor worsened lung structure in hyperoxia-exposed mice, in which postnatal lung maturation was blunted. CONCLUSION: Caffeine modulated TGF-ß signaling in vitro and in vivo. Caffeine administration was well-tolerated by newborn mice, but did not influence the course of blunted postnatal lung maturation in a hyperoxia-based experimental mouse model of BPD.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Cafeína/farmacologia , Fibroblastos/efeitos dos fármacos , Hiperóxia/complicações , Alvéolos Pulmonares/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteoglicanas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA