Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(4): 3036-3043, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38180133

RESUMO

We experimentally probe the microscopic variations in a model polymer-nanoparticle (NP) binary mixture (mixture of polybutadiene and clay nanoplatelets) across a thermal evolution path for which Tevolution > Tg(polymer). The evolution of the NP dispersion, NP crystallinity, polymer chain-NP interface, and nature of polymer chain-NP interaction are mapped for a spectrum of temperatures and NP concentrations constrained by experiments. Multiple pieces of evidence indicate that thermal evolution does not influence the nature of interparticle dispersion and is also independent of NP concentration in the binary mixture. However, the NP crystalline order significantly reduces across the thermal evolution path. Thermal evolution induces a transition of a sharp polymer chain-NP interface to a diffuse interfacial layer. In contrast, an already diffuse polymer-NP interface existing in the binary mixture due to particle crowding at high NP concentrations undergoes no significant change in its nature across the evolution path. At all particle concentrations, thermal evolution changes the dominant interaction from polymer chain-polymer chain to polymer chain-NP. These insights aid in explaining the molecular origins of unique and anomalous behaviors shown by polymer-nanoparticle binary mixtures while undergoing thermal evolution.

2.
Phys Chem Chem Phys ; 25(19): 13550-13559, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133361

RESUMO

The physical properties of oxide glasses are crucially dependent on the atomistic structural speciation. In this study, we investigate the variation in the local ordering in the glass network of strontium borosilicate glasses (34.82 SrO, 51.84 B2O3, 13.34 SiO2 in mol%) with a progressive substitution of B2O3 by Al2O3 and estimate the structural parameters: the oxygen packing fraction, and the average network coordination number. The coordination of the network forming cations at various glass compositions is determined using 11B, 27Al, and 29Si solid-state nuclear magnetic resonance (SSNMR). The SSNMR reveals that at the higher substitution of B2O3 by Al2O3 in the glass composition, the coordination network of Al3+ exists predominantly in the 4 coordinated state, the network forming B3+ cations transform from a tetrahedral BO4 to a trigonal BO3 structure, and the Q4 form of silicates is dominant. The average coordination number and the oxygen packing fraction were calculated using the parameters obtained from the SSNMR results, and it is observed that the average coordination number decreases, and the oxygen packing fraction increases on incorporating Al. It is interesting to note that some of the thermophysical properties of these compositions closely follow the pattern shown by the average coordination number and the oxygen packing fraction.

3.
Phys Chem Chem Phys ; 24(23): 14511-14516, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660818

RESUMO

We experimentally show that nanoparticles (NPs) can significantly regulate the network topological defects during a molecularly controlled elastomeric synthesis. Using positron annihilation lifetime spectroscopy, we demonstrate this on well-defined model systems of poly(dimethyl siloxane) elastomers and layered silicate nanoparticles (NPs). The evolutions of topological defects in elastomeric networks prepared from unimodal, bimodal, and NP dispersed bimodal elastomers are sequentially investigated. The extent of NP induced defect regulation is identified by varying the particle concentration from moderately low to an approximate upper limit. The fraction of free volume hole defects present between packed chains in the network generated by molecular control is significantly reduced. The fraction of smaller interstitial cavities near the cross-link sites shows a moderate increase at the lowest NP concentration. However, this fraction decreases at a high NP concentration and is nearly the same as that of bimodal networks that are devoid of NP infusion. Despite the variations in their fractions with NP infusion, the sizes of both these types of defects that remain in the network are minimally affected. The collective topological defects arising from chain induced heterogeneity also show a qualitative reduction upon NP infusion.


Assuntos
Elastômeros , Nanopartículas , Nanopartículas/química
4.
Environ Sci Pollut Res Int ; 29(18): 26078-26112, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076840

RESUMO

Marine biofouling has gnawed both mobile and non-mobile marine structures since time immemorial, leading to the deterioration of designed operational capabilities as well as a loss of valuable economic revenues. Mitigation of biofouling has been the primary focus of researchers and scientists from across the globe to save billions of dollars wasted due to the biological fouling of marine structures. The availability of an appropriate environment along with favorable substrata initiates biofilm formation within a few minutes. The crucial element in establishing a gelatinous biofilm is the excreted metabolites of destructive nature and exopolymeric substances (EPSs). These help in securing as well as signaling numerous foulants to establish themselves on this substrate. The larvae of various benthic invertebrates adhere to these suitable surfaces and transform from juveniles to adult barnacles depending upon the environment. Despite biofouling being characteristically witnessed for a month or lengthier timeframe, the preliminary phases of the fouling process typically transpire on a much lesser timescale. A few natural and synthetic additives had demonstrated excellent non-toxic anti barnacle establishment capability; however, further development into commercial products is still far-fetched. This review collates the specific anti-barnacle coatings, emphasizing natural additives, their sources of extraction, general life cycle analysis, and concluding future perspectives of this niche product.


Assuntos
Incrustação Biológica , Thoracica , Animais , Biofilmes , Incrustação Biológica/prevenção & controle , Invertebrados , Propriedades de Superfície
5.
Soft Matter ; 17(7): 1850-1860, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33404044

RESUMO

We elucidate the influences of hydration on the morphological heterogeneity of the class of hard-soft segmented copolymers by experimenting on three model members selected from this group. For influences on phase segmentation, we quantify the degree of phase separation, segment boundary diffusiveness and extent of interphase mixing. Qualitative variations induced by hydration in hydrogen bonding within the phases are also mapped. An inverse relationship between the degree of segmentation and inherent water miscibility of the polymer backbones is observed, that is, high miscibility reducing the degree of segmentation, whereas poor miscibility increasing it. We then quantify hydration induced variations in the size, volume fraction and interaction pair potentials of individual hard segments. The influences on hard segment assemblies are assessed by quantifying their size, volume fraction, interaction pair potential and intrasegment adhesion. This quantification reveals a complex interplay between the volume expansion of individual hard segments and simultaneous swelling and disassembly of their assemblies. Finally, we integrate the segmentation parameters with observed alterations in hydrogen bonding and the inherent polarizability of segments to present a mechanism that reasonably describes the hydrated state morphology. Besides revealing the influences of hydration on the morphological heterogeneity of this class of polymers, our insights give strategies for new synthesis methods for water contact applications and aids in predicting their hydration induced thermomechanical property alterations.

6.
ACS Appl Mater Interfaces ; 11(40): 37013-37025, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513381

RESUMO

In recent times, high-temperature polymer electrolyte membranes (HTPEMs) have emerged as viable alternatives to the Nafion-based low-temperature-operated polymer electrolyte membrane fuel cells. This is owing to their higher tolerance to fuel impurities, efficient water management, and higher cathode kinetics. However, the most efficacious HTPEMs such as poly(benzimidazole) (PBI) or 2,5-poly(benzimidazole) (ABPBI), which rely on the extent of phosphoric acid (PA) doping level for fuel cell performance, suffer from poor mechanical properties at higher acid doping levels and dopant leaching during continuous operation. To overcome these issues, we report the synthesis of ABPBI membranes and fabrication of ABPBI-zirconium pyrophosphate (α-ZrP)-based nanocomposite membranes by an ex situ methodology using methane sulfonic acid as the solvent. The incorporation of hydrophilic α-ZrP into the membrane resulted in higher dopability of PA (6.5 mol) and proton conductivity (46 mS/cm) of the membranes (10 wt % of α-ZrP) as against the corresponding values of 3.6 mol and 27 mS/cm, respectively, for the pristine membrane. More remarkably, these property improvements could be achieved while simultaneously augmenting the thermomechanical properties and oxidative stability of the membranes. The unit-cell tests showed a marked improvement in the maximum power density for the nanocomposite membrane (335 mW/cm2 at 10 wt % α-ZrP content) over the pristine ABPBI membrane (200 mW/cm2). We also report for the first time the feasibility of a 100 W HTPEM fuel cell (HTPEMFC) stack operated with the nanocomposite membrane with an active area of 39 cm2. The HTPEMFC stack delivered a stable voltage and power output, with a voltage drop rate of 0.84 µV/h over a run time of 730 h.

7.
Soft Matter ; 14(19): 3870-3881, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29722376

RESUMO

The kinetics of liquid solvent sorption in polymeric systems and their nanocomposites often deviate from normal Fickian behaviour. This needs to be understood and interpreted, in terms of their underlying mechanistic origins. In the present study, the results of time dependent toluene sorption measurements in model segmented polyurethane-urea/clay nanocomposites have been analysed at room temperature. The studies revealed pronounced S-shaped sorption curves and unusually higher swelling of the nanocomposites compared to the neat polyurethane-urea matrix. Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements on the nanocomposites in the dry and liquid toluene saturated state have been carried out. The DMA studies revealed a significant decrease in the α relaxation temperature and storage modulus of the nanocomposites in the swollen state compared to the dry samples. The SAXS results showed that the nanoclay dispersion morphology transformed from intercalation in the dry state to exfoliation in the swollen state and the interdomain distance between hard segments increased upon swelling. Thermodynamic analysis of the Flory-Huggins interaction parameter (χ) of nanocomposite/toluene systems revealed increasingly negative χ values with increased clay loading. These results imply a significant plasticization effect of toluene on the nanocomposites. An interpretation of these data, which relates the abovementioned results, is presented in the framework of differential swelling stress (DSS) induced deviation from Fickian transport characteristics. We expect that these findings and methods may provide new insight into the analysis of the solvent diffusion process in heterogeneous polymers and their nanocomposites.

8.
Phys Chem Chem Phys ; 18(4): 2682-9, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26726752

RESUMO

We conducted transport studies of a common solvent (toluene) in its condensed state, through a model hard-soft segmented polyurethane-clay nanocomposite. The solvent diffusivity is observed to be non-monotonic in a functional relationship with a filler volume fraction. In stark contrast, both classical tortuous path theory based geometric calculations and free volume measurements suggest the normally expected monotonic decrease in diffusivity with increase in clay volume fraction. Large deviations between experimentally observed diffusivity coefficients and those theoretically estimated from geometric theory are also observed. However, the equilibrium swelling of a nanocomposite as indicated by the solubility coefficient did not change. To gain an insight into the solvent interaction behavior, we conducted a pre- and post swollen segmented phase analysis of pure polymers and nanocomposites. We find that in a nanocomposite, the solvent has to interact with a filler altered hard-soft segmented morphology. In the altered phase separated morphology, the spatial distribution of thermodynamically segmented hard blocks in the continuous soft matrix becomes a strong function of filler concentration. Upon solvent interaction, this spatial distribution gets reoriented due to sorption and de-clustering. The results indicate strong non-barrier influences of nanoscale fillers dispersed in phase segmented block co-polymers, affecting solvent diffusivity through them. Based on pre- and post swollen morphological observations, we postulate a possible mechanism for the non-monotonic behaviour of solvent transport for hard-soft segmented co-polymers, in which the thermodynamic phase separation is influenced by the filler.

9.
Phys Chem Chem Phys ; 18(3): 1487-99, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26660646

RESUMO

There has been an increasing recognition of the fact that purely geometric factors associated with clay platelet dispersion in a polymer matrix cannot adequately explain the barrier properties of polymer/clay nanocomposites. The objective of the present work is to understand the nanoclay induced structural changes in a polyurethane-urea matrix and clay dispersion at different length scales using segment-specific characterization techniques and implications of the same in gas barrier properties using He, N2 and CO2 as probe molecules. Wide angle X-ray diffraction (WAXD) and positron annihilation life time spectroscopy (PALS) studies revealed nanoclay induced alterations in the chain packing of the amorphous soft segments of the polyurethane matrix at a molecular scale of a few Angstroms. The hard segment organization and the phase morphology of the nanocomposites, spanning length scales of several nanometers, were investigated by small angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the presence of a constrained amorphous region surrounding the nanoclay was confirmed from AFM, WAXD and PALS results. Several pertinent structural variables from the gas transport point of view were deduced from these characterization techniques to understand the effect of the barrier properties in tandem with the clay dispersion morphology.

10.
Chemphyschem ; 13(17): 3916-22, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23129045

RESUMO

Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (≤1 wt. %). The ortho-positronium lifetime (τ(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA