Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891359

RESUMO

The foliar application of nutrients and plant growth regulators (PGRs) at critical crop growth periods can improve the yield of field crops. Hence, the present study was conducted to quantify the effects of the combined application of nutrients and PGRs (crop-specific formulation) on maize, blackgram, greengram, groundnut, cotton, sugarcane, and coconut yield. In all the crops except coconut, the treatments included (i) a foliar spray of crop-specific nutrients and PGR combinations and (ii) an unsprayed control. In coconut, the treatments included (i) the root feeding of coconut-specific nutrients and PGR combinations and (ii) an untreated control. Crop-specific nutrient and PGR formulations were sprayed, namely, Tamil Nadu Agricultural University (TNAU) maize maxim 1.5% at the tassel initiation and grain-filling stages of maize, TNAU pulse wonder 1.0% at the peak flowering stage of green gram and black gram, TNAU groundnut-rich 1.0% at the flowering and pod-filling stages of groundnut, TNAU cotton plus 1.25% at the flowering and boll development stages of cotton, and TNAU sugarcane booster 0.5% at 45 days after planting (DAP), 0.75% at 60 DAP, and 1.0% at 75 DAP of sugarcane. The results showed that the foliar application of TNAU maize maxim, TNAU pulse wonder, TNAU groundnut-rich, TNAU cotton plus and TNAU sugarcane booster and the root feeding of TNAU coconut tonic increased the yield of maize, pulses, groundnut, cotton, sugarcane, and coconut, resulting in higher economic returns.

2.
J Biotechnol ; 359: 194-206, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252874

RESUMO

Lack of appropriate process models, reliable online sensors, and process variability in bioprocess systems are poising challenges in real-time monitoring and control of critical process parameters (CPPs). This present investigation deals with the development of a non-invasive soft sensor by utilizing metabolic heat rate as input signal for online estimation of specific growth rate (µest) during the induction phase of glycoengineered Pichia pastoris for human interferon-alpha 2b (huIFNα2b) production. Feedforward strategy employing a predetermined exponential feeding of methanol during the induction phase was dealt at defined setpoint values (µSP). Standard PID controller with predetermined gain values regulated methanol feeding in accordance with the deviation from the µSP value. An adaptive PID (gain scheduling) significantly minimized the deviation of µ from its µSP value, reduced the amplitude of oscillation and achieved long-term controller stability. Robust control of methanol feeding by adaptive PID resulted in a 1.5 and 2.2-fold increase in productivity of huIFNα2b compared to standard PID and feedforward controls respectively. Moreover, adaptive PID control facilitated narrow range control of µ for longer durations (> 20 h) with a low average tracking error (< 6%) enumerating its scope of application in therapeutic protein production in near future.


Assuntos
Metanol , Pichia , Humanos , Pichia/metabolismo , Metanol/metabolismo , Fermentação , Temperatura Alta , Interferon alfa-2/metabolismo , Reatores Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Appl Microbiol Biotechnol ; 106(3): 1079-1095, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35076739

RESUMO

This present investigation addressing the metabolic bottleneck in synthesis of high MW HA by Streptococcus zooepidemicus and illustrates the application of calorimetric fed-batch control of µ at a narrower range. Feedforward (FF) and feedback (FB) control was devised to improve the molecular weight (MW) of HA production by S. zooepidemicus. Metabolic heat measurements (Fermentation calorimetry) were modeled to decipher real-time specific growth rate, [Formula: see text] was looped into the PID circuit, envisaged to control [Formula: see text] to their desired setpoint values 0.05 [Formula: see text], 0.1 [Formula: see text], and 0.15 [Formula: see text] respectively. Similarly, a predetermined exponential feed rate irrespective of real-time µ was carried out in FF strategy. The developed FB strategy established a robust control capable of maintaining the specific growth rate (µ) close to the [Formula: see text] value with a minimal tracking error. Exponential feed rate carried out with a lowest [Formula: see text] of 0.05 [Formula: see text] showed an improved MW of HA to 2.98 MDa and 2.94 MDa for the FF and FB-based control strategies respectively. An optimal HA titer of 4.73 g/L was achieved in FF control strategy at [Formula: see text]. Superior control of µ at low [Formula: see text] value was observed to influence HA polymerization positively by yielding an improved MW and desired polydispersity index (PDI) of HA. PID control offers advantage over conventional fed-batch method to synthesize HA at an improved MW. Calorimetric signal-based µ control by PID negates adverse effects due to the secretion of other end products albeit maintaining regular metabolic activities. KEY POINTS: First report to compare HA productivities by feedforward and feedback control strategy. Inherent merits of regulating µ at narrower range were entailed. Relationship between operating µ and HA molecular weight was discussed.


Assuntos
Streptococcus equi , Fermentação , Temperatura Alta , Ácido Hialurônico , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA